

Introduction to Quantum Teleportation
Zeyuan Zhu 基应61

A brief retrospection

－Direct quantum communication？直接量子传态？

- Classical channel 经典信道
- Non－cloneable 不可克隆定理
－EPR pair repaired by 3rd－party

rint the language of state vectors.

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

fint the language of state vectors.

$$
\left|\Psi_{0}\right\rangle=\frac{1}{\sqrt{2}}[\alpha|0\rangle(|00\rangle+|11\rangle)+\beta|1\rangle(|00\rangle+|11\rangle)]
$$

fint the language of state vectors.

$$
\left|\Psi_{1}\right\rangle=\frac{1}{\sqrt{2}}[\alpha|0\rangle(|00\rangle+|11\rangle)+-\beta|1\rangle(|10\rangle+|01\rangle)] \quad \text { Hadamard }
$$

the language of state vectors.

$$
\begin{aligned}
\left|\Psi_{2}\right\rangle= & \frac{1}{2}[\alpha(|0\rangle+|1\rangle)(|00\rangle+|11\rangle)+\beta(|0\rangle-|1\rangle)(|10\rangle+|01\rangle)] \\
& =\frac{1}{2}[| | 00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle) \quad \text { Measure } \\
& +|10\rangle(\alpha|0\rangle-\beta|1\rangle)+|11\rangle(\alpha|1\rangle-\beta|0\rangle)]
\end{aligned}
$$

A brief retrospection

－Classical channel 经典信道
－00，01，10， 11 －2bits
－Non－cloneable 不可克隆定理
－｜00＞，｜01＞，｜10＞，｜11＞
－EPR pair repaired by $3^{\text {rd }}$－party

Negative

Nes aive Positive!

Init State $1 / 2|0>, 1 / 2| 1\rangle$
|0>, Alice do sth.
$\mid 1>$, Alice do sth else.

Bob recover |0>

Bob recover
|1>

Int the language of density operator

$$
\begin{aligned}
\rho_{\text {init }} & =\left(\begin{array}{cc}
\alpha & \beta \\
\beta^{*} & 1-\alpha
\end{array}\right) \\
& =\alpha|0\rangle\langle 0|+\beta|0\rangle\langle 1|+\beta^{*}|1\rangle\langle 0|+(1-\alpha)|1\rangle\langle 1|
\end{aligned}
$$

Int the language of density operator

$$
\begin{aligned}
\rho_{\left|\beta_{00}\right\rangle} & =\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) / 2 \\
& =\frac{1}{2}(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|)
\end{aligned}
$$

FInt the language of density operator

$$
\rho_{0}=\left(\begin{array}{cc}
\alpha & \beta \\
\beta & 1-\alpha
\end{array}\right) \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) / 2
$$

Int the language of density operator

$$
\mathrm{U}_{\mathrm{CNOT}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Remark: $|00\rangle\langle 00|+|01\rangle\langle 01|+|11\rangle\langle 10|+|10\rangle\langle 11|$
$\rho_{1}=\mathrm{U}_{\mathrm{CNOT}}^{\dagger} \cdot \rho_{0} \cdot \mathrm{U}_{\text {CNOT }}$

Int the language of density operator

$$
\begin{aligned}
& U_{H}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) / \sqrt{2} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \rho_{2}=U_{H}^{\dagger} \cdot \rho_{1} \cdot U_{H}
\end{aligned}
$$

Int the language of density operator

$$
\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}\right\}=\left\{\begin{array}{l}
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \otimes \mathrm{I}_{2},\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \otimes \mathrm{I}_{2}, \\
\left.\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \otimes \mathrm{I}_{2},\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \otimes I_{2}
\end{array}\right\}
$$

Fint the language of density operator

$$
\begin{array}{ll}
\rho_{00}=|00\rangle\langle 00| \otimes\left(\begin{array}{cc}
\alpha & \beta \\
\beta^{*} & 1-\alpha
\end{array}\right), & \rho_{01}=|01\rangle\langle 01| \otimes\left(\begin{array}{cc}
1-\alpha & \beta^{*} \\
\beta & \alpha
\end{array}\right) \\
\rho_{10}=|10\rangle\langle 10| \otimes\left(\begin{array}{cc}
\alpha & -\beta \\
-\beta^{*} & 1-\alpha
\end{array}\right), & \rho_{11}=|11\rangle\langle 11| \otimes\left(\begin{array}{cc}
1-\alpha & -\beta^{*} \\
-\beta & \alpha
\end{array}\right) \\
\text { Remark: } \frac{M_{i}^{\dagger} \rho_{2} M_{i}}{\operatorname{Tr}\left(M_{i}^{\dagger} \rho_{2} M_{i}\right)}
\end{array}
$$

the language of density operator

$\left(\begin{array}{cc}\alpha & \beta \\ \beta^{*} & 1-\alpha\end{array}\right)$,
$\mathrm{U}_{\mathrm{X}}^{\dagger}\left(\begin{array}{cc}1-\alpha & \beta^{*} \\ \beta & \alpha\end{array}\right) \mathrm{U}_{\mathrm{X}}=\left(\begin{array}{cc}\alpha & \beta \\ \beta^{*} & 1-\alpha\end{array}\right)$
$U_{Z}^{\dagger}\left(\begin{array}{cc}\alpha & -\beta \\ -\beta^{*} & 1-\alpha\end{array}\right) U_{Z}=\left(\begin{array}{cc}\alpha & \beta \\ \beta^{*} & 1-\alpha\end{array}\right)$,
$U_{Z}^{\dagger} U_{X}^{\dagger}\left(\begin{array}{cc}1-\alpha & -\beta^{*} \\ -\beta & \alpha\end{array}\right) U_{X} U_{Z}=\left(\begin{array}{cc}\alpha & \beta \\ \beta^{*} & 1-\alpha\end{array}\right)$

Data leakage?

- If the classical channel has been spied?
- Does the information reveals anything about the input?
- 00, 01, 10, 11 with equal probability of $1 / 4$!
- Safe!
- Without Alice's information?
- If Bob's qubit has been stolen?
- Safe!

Classical channel + Bob's qubit $=$ Bob 2\#

Thank you
zhuzeyuan@hotmail.com

