6.854 Advanced Algorithms October 21, 2011

Optional Lecture 3: Interior Point Method
Lecturer: Zeyuan Allen Zhu Scribe: Zeyuan Allen Zhu

Disclaimer: These lecture notes have not been fully checked by Zeyuan.

1 References

This file of notes serves as a reference for Zeyuan himself about the materials to be delivered in class.
It copies a lot of materials from Prof Michel X. Goemans’ lecture notes on 6.854 in 1994, (see http:
//www-math.mit.edu/~goemans/notes-1p.ps)), and Prof Sven O. Krumke’s report on interior point
methods (see http://optimierung.mathematik.uni-kl.de/~krumke/Notes/interior-lecture.
pdf).

Ye’s interior point algorithm achieves the best known asymptotic running time in the literature,
and this presentation incorporates some simplifications made by Freund.

2 Introduction
e O(nSL) complexity for ellipsoid, O(y/nL) x O(n?) complexity of interior point method.

e Only describe for LP today, and can be generalized to SDP and other convex programming.

e Primal / Dual:

min Tz max by
(P)q s.it. Az =D, (D) st. Aly+s=c,
x>0 s>0

e Assume here that A is of full row-rank, A is m x n, with m < n.

e A primal-dual algorithm, keeping track of (Z,5) such that z > 0 and 3 > 0 (i.e., 37 : ATy =

c—3).

e Stay away from the boundary of the polytope, and thus making the duality gap ¢’z — b7y =
_T_
5> 0.

e Define a potential function G(z, s) := glog(zT's) — Z?:1 log(z;s;).

e Choose ¢ = n + /n in order to guarantee O(y/nL) iterations.

3 The high-level description

e Start from some feasible solution

The primal/dual may not always be feasible!

It may be hard to find a feasible solution!

The starting potential might be huge!
Please refer to http://www-math.mit.edu/~goemans/18415/18415-FALLO1/init-1p.
ps.
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— Claim: can always turn the problem into a feasible primal/dual pair, with a starting
potential of O(y/nL).

e At each iteration,

— Scale from (Z, 5) to (e, s’) using affine transformation (Q3).

— Compute the gradient g = V,G(x, 5)|(c,+) (Which is actually the “same” as V,G(z, 5)|(c,s))-
(Q4)

— If the projection of g on the primal feasible subspace (Az = b) is large, make a primal
gradient descent step. (Q4)

— Otherwise, make a dual gradient descent step. (Q4)
e Stop until the potential is smaller than —k+/nL for some constant k. (Q2)

e Only get an approximate solution so far, turn it into an exact one! (Q1)

4 QI1: What accuracy do we need?

Lemma 1. Let x1, x5 be vertices of Ax = b and x > 0. If c'xy # cT'xy, then |cTay — cTwy| > 272L,

Proof. Exists integers ¢, ¢z such that 1 < g1, ¢2 < 2¥ and q121, g2, 22 € N. Therefore:

Q1Q2(CT$1*CT$2) > 1

Q192 T g

|cTay — Tay| =

O

Corollary 2. Let OPT be the optimal answer. If x is a feasible solution to P with ¢’z < OPT +
272 then any vertex x' such that ¢z’ < ¢Tx is an optimal solution of P.
Proof. e Suppose z’ is not optimal, but some other vertex z* is.

e We have c’a’ — c¢Ta* > 272L according to the lemma.

o It gives cTa’ > OPT +272L > Ty > Ta'.
O

This corollary tells us that as long as our value is 272% close to OPT, we are pretty safe: any
vertex better than this would be a solution. But how to actually find one? One can adopt the
following procedure:

e Let P(x):={j:x; >0}

If the columns of A on indices P(x) are linearly independent, then can fill it up to m columns
(by adding m — | P(z)| ones). This can be done since A has full row-rank, and will imply that
x is already a vertex.

Otherwise, the columns {a; : i € P(x)} are linearly dependent: ;. p(,y Aia; = 0.

I claim that 4 § - A is still feasible for small enough § > 0.

One of the two directions will not increase the objective of (P), and at the same time destroy
some coordinate.

e Repeat.

A naive implementation takes time O(n x n3) because we might iterate O(n) times and each time
do a Gaussian elimination. One can actually be clever and do the Gaussian elimination only once.
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5 Q2: How is the potential related to the duality gap

For a generic choice of ¢, we are uncertain about its behavior when we are getting close to the
optimal solution.

Lemma 3. Let x,s > 0 be vectors in R™"*!, then

n
nlogzls — Zlongsj >nlogn .
j=1

1
Proof. (H?Zl a:jsj> <1 (Z?:I a:jsj> =1 (Z?Zl longsj) < log (E?Zl xjsj> —logn O
e This means, we should choose some g > n and this ensures G — —oo as z7s — 0.
e ¢ =n+ 1 will result in O(nL) number of iterations.
e ¢ =n+ +/n will result in O(y/nL) number of iterations.

e But when can we stop?

Lemma 4. If G(z,s) < —ky/nL for some constant k, then xTs < e7*L.

Proof. By the previous lemma, —kv/nL > y/nlogzTs + nlogn = logz”s < —kL — /nlogn <
—kL. O

6 Q3: What is an affine transformation?

e Given Z > 0, we consider the affine scaling z = (z1,...,z,) = 2’ = (£,..., Z2).

e By defining X = diag{z1,...,%,}:

min ¢/ X2’/ max bTy
(P)q st. AXa' =0, (D) st. (AX)Ty+ Xs= Xc,
>0 Xs>0

Also written as (if we define ¢ = Xe¢,s' = Xs, A’ = AX):

min Ty max by
(P) s.t. A/J?/ = b, (D) s.t. (A/)Ty —+ 3/ = 0/7
' >0 §>0

The above analysis implies that, starting from a feasible solution (Z, 5), one can change the
(P) and (D) program, making (e, s’) a feasible solution to the new program.

e Since e = X! and ¢ = 5X, we have 7;5; = s’;, the duality gap G(z,5) = G(e,s').

In this transformed space, all points are far from the boundaries.
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7 Q4: How to make a gradient descent step

7.1

7.2

Primal descent

Starting from (e, s'), and recall G(z, s) = qlog(zT's) — > i1 log(x;s)).

q q
9= VaG(5,2)|(ear) = (Es — (121, ..., 1/33”)) ‘(E’S/) o L

To maximize the change in G, we want to move in the direction of —g.
However, we need to insure the new point is still feasible (i.e. Az = b) still holds.

Let d be the projection of g onto the null space {x : Az = 0}.

Claim 5. d = (I — AT(AAT)"1A)g

Proof. g — d must be orthogonal to the null space of A, and thus being some combination of
row vectors of A.

Ad =0,
{ Jwst. ATw=g—d = (AAT)w=Ag

Solving the equation we get w = (AAT)"1Ag and thus d = g — AT(AAT)"1Ag = (I —

AT(AAT)=1A)g. O

If ||d||2 = VdTd > 0.4, we make a primal step:

—
VR T
QIJ\ (g
|
L=
&)—‘
ISH

Observe that > 0, because Z; = 1 — iﬁ >3/4>0.

Lemma 6. When making a primal step, G(&,38) — G(e, s') < 7570.

Dual descent

If ||d||2 < 0.4, we make a dual step. But let us compute the gradient first:
q
h=VG(x,5)|(es) = ¢ (1/84,1/s5,...,1/s.)

Notice that h; = g;/s;, and thus h and g can be “seen” to be approximately in the same
direction.

Need to maintain the feasibility of (D): ATy + s = c. We want:

ATg+35 = ¢
=5-s = AT(g—-v)

This means, the change 5 — s’ should be in the image space of A7 (and thus perpendicular to
the null space). Let us move in the direction of —(g — d).
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e Recall that (g — d) = ATw = AT(AAT)"1Ag, we choose § =y + pw and § = s' — (g — d)u.

’

. T
e We choose some magic number p = qs , and:
- T/
5§ = §—-22(g—d)
! € 5/ S,
= 5 -5 (@77 —e—d)
€TS,
= =(d+e)
T = e

e Similarly, we have § > 0 (using ||d|| < 0.4).
[ ]

Lemma 7. When making a dual step, G(Z,5) — G(e, s') < —%.

7.3 Missing proofs

Fact 8. )
T
< - —2 <log(l—x) < —
Vx| < a <1, x 2(1—a)_10g( x) <
Proof of I
G(#,3) — Gle,s') = G(e— md, sy — Gle, s")

d’'s' -
= qlog (e s — ) — 10g< > logs
Af|d| Jz::l 4Hd|| Z

—qlog(eT's’) + Z log1 + Z log s

j—l j—l

= gqlog ( ) log ( ) using the above fact for a = 1/4)
ey Z )

2

da / n
< - J
= 4fd]leTs - Z 4||d|| 16||d|\22 3/4)
qd”s’' er 1
4||d|[eTs"  4||d|| 24
1 q ,)T 1
p— — —_— d -
4] (= ¥) d+ 5
1 o1 |2 1 11 7
a9 4 = qapt 2 S 0 T2 T 10

Notice that, this is nothing but saying that, the size of the descent should be proportional to the
direction d dot product the gradient g, if we ignore the second order derivative. O

3-5



Proof of [Lemma 7. Recall that § =

On the other hand, we have Y°7_, log(5;) —nlog (625

isl (d + e). We first compute that

" _ el's = eld
Zlog(sj) —nlog (7) = Zlog(1+dj) —nlog(1+7)
j=1 j=1

" az eld
> -
> D4 3/5 ™

j=1
N [ 2
6/5 ~ 15

) < 0 by Jensen’s inequality. Now we can start

to compute:

G(e,3) — Gle,s') = qlog Zlog 55) Zlog(sg)

8

Tz 9 T T ot
< qlog(:T:/)—i———nlog(e )—l—nlog(e S) (recall ¢ = n + /n)

15
2 T3 2
= g5 T Vilos () = g5 + Vinlog (

E
s q
5 vintos (1 f(n+04f)> (using e d] < el ] = vald])

0.6y/n 0.6n 2 3 1
— 1 1-— < —— — = ——
15+\/ﬁog( +\f) <

(n+ed))

IN

IN

Final analysis

We have O(y/nL) iterations and each having a O(n?) time Gaussian elimination.
Wait! Operations are not atomic. For instance,
The two norm ||d|| involves irrational operations

— This can be taken care by the fact that, we can change from 0.4 to 0.399 and all the
results still go through.

— Therefore, we only need to compute d to the first a few bits.

The complexity for Gaussian elimination requires O(n?) arithmetic operations (each arithmetic
operation costs O(L) in fact).

Wait! Does the gradient descent steps increase the bit complexity?
Yes, but we can round things down to 2%, without affecting the duality gap too much.

Yinyu Ye has an O(n®L)-algorithm in his seminal paper http://www.springerlink.com/
content/n577730515780778/fulltext . pdf.
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