
6.854 Advanced Algorithms October 21, 2011

Optional Lecture 3: Interior Point Method
Lecturer: Zeyuan Allen Zhu Scribe: Zeyuan Allen Zhu

Disclaimer: These lecture notes have not been fully checked by Zeyuan.

1 References

This file of notes serves as a reference for Zeyuan himself about the materials to be delivered in class.
It copies a lot of materials from Prof Michel X. Goemans’ lecture notes on 6.854 in 1994, (see http:

//www-math.mit.edu/~goemans/notes-lp.ps), and Prof Sven O. Krumke’s report on interior point
methods (see http://optimierung.mathematik.uni-kl.de/~krumke/Notes/interior-lecture.

pdf).
Ye’s interior point algorithm achieves the best known asymptotic running time in the literature,

and this presentation incorporates some simplifications made by Freund.

2 Introduction

• O(n6L) complexity for ellipsoid, O(
√
nL)×O(n3) complexity of interior point method.

• Only describe for LP today, and can be generalized to SDP and other convex programming.

• Primal / Dual:

(P )

 min cTx
s.t. Ax = b,

x ≥ 0
(D)

 max bT y
s.t. AT y + s = c,

s ≥ 0

• Assume here that A is of full row-rank, A is m× n, with m ≤ n.

• A primal-dual algorithm, keeping track of (x̄, s̄) such that x̄ > 0 and s̄ > 0 (i.e., ∃ȳ : AT ȳ =
c− s̄).

• Stay away from the boundary of the polytope, and thus making the duality gap cT x̄− bT ȳ =
x̄T s̄ > 0.

• Define a potential function G(x, s) := q log(xT s)−
∑n

j=1 log(xjsj).

• Choose q = n+
√
n in order to guarantee O(

√
nL) iterations.

3 The high-level description

• Start from some feasible solution

– The primal/dual may not always be feasible!

– It may be hard to find a feasible solution!

– The starting potential might be huge!

– Please refer to http://www-math.mit.edu/~goemans/18415/18415-FALL01/init-lp.

ps.
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– Claim: can always turn the problem into a feasible primal/dual pair, with a starting
potential of O(

√
nL).

• At each iteration,

– Scale from (x̄, s̄) to (e, s′) using affine transformation (Q3).

– Compute the gradient g = ∇xG(x, s)|(e,s′) (which is actually the “same” as∇sG(x, s)|(e,s′)).
(Q4)

– If the projection of g on the primal feasible subspace (Ax = b) is large, make a primal
gradient descent step. (Q4)

– Otherwise, make a dual gradient descent step. (Q4)

• Stop until the potential is smaller than −k
√
nL for some constant k. (Q2)

• Only get an approximate solution so far, turn it into an exact one! (Q1)

4 Q1: What accuracy do we need?

Lemma 1. Let x1, x2 be vertices of Ax = b and x ≥ 0. If cTx1 6= cTx2, then |cTx1− cTx2| > 2−2L.

Proof. Exists integers q1, q2 such that 1 ≤ q1, q2 < 2L and q1x1, q2, x2 ∈ N. Therefore:

|cTx1 − cTx2| =
∣∣∣∣q1q2(cTx1 − cTx2)

q1q2

∣∣∣∣ ≥ 1

q1q2
.

Corollary 2. Let OPT be the optimal answer. If x is a feasible solution to P with cTx ≤ OPT +
2−2L, then any vertex x′ such that cTx′ ≤ cTx is an optimal solution of P .

Proof. • Suppose x′ is not optimal, but some other vertex x∗ is.

• We have cTx′ − cTx∗ > 2−2L according to the lemma.

• It gives cTx′ > OPT + 2−2L ≥ cTx ≥ cTx′.

This corollary tells us that as long as our value is 2−2L close to OPT , we are pretty safe: any
vertex better than this would be a solution. But how to actually find one? One can adopt the
following procedure:

• Let P (x) := {j : xj > 0}.

• If the columns of A on indices P (x) are linearly independent, then can fill it up to m columns
(by adding m− |P (x)| ones). This can be done since A has full row-rank, and will imply that
x is already a vertex.

• Otherwise, the columns {ai : i ∈ P (x)} are linearly dependent:
∑

i∈P (x) λiai = 0.

• I claim that x+ δ · λ is still feasible for small enough δ > 0.

• One of the two directions will not increase the objective of (P ), and at the same time destroy
some coordinate.

• Repeat.

A naive implementation takes time O(n × n3) because we might iterate O(n) times and each time
do a Gaussian elimination. One can actually be clever and do the Gaussian elimination only once.
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5 Q2: How is the potential related to the duality gap

For a generic choice of q, we are uncertain about its behavior when we are getting close to the
optimal solution.

Lemma 3. Let x, s > 0 be vectors in Rn×1, then

n log xT s−
n∑

j=1

log xjsj ≥ n log n .

Proof.
(∏n

j=1 xjsj

)1/n

≤ 1
n

(∑n
j=1 xjsj

)
⇒ 1

n

(∑n
j=1 log xjsj

)
≤ log

(∑n
j=1 xjsj

)
− log n

• This means, we should choose some q > n and this ensures G→ −∞ as xT s→ 0.

• q = n+ 1 will result in O(nL) number of iterations.

• q = n+
√
n will result in O(

√
nL) number of iterations.

• But when can we stop?

Lemma 4. If G(x, s) ≤ −k
√
nL for some constant k, then xT s < e−kL.

Proof. By the previous lemma, −k
√
nL ≥

√
n log xT s + n log n ⇒ log xT s ≤ −kL −

√
n log n <

−kL.

6 Q3: What is an affine transformation?

• Given x̄ > 0, we consider the affine scaling x = (x1, . . . , xn)→ x′ = (x1

x̄1
, . . . , xn

x̄n
).

• By defining X = diag{x̄1, . . . , x̄n}:

(P )

 min cTXx′

s.t. AXx′ = b,
x′ ≥ 0

(D)

 max bT y
s.t. (AX)T y +Xs = Xc,

Xs ≥ 0

• Also written as (if we define c′ = Xc, s′ = Xs,A′ = AX):

(P )

 min c′Tx′

s.t. A′x′ = b,
x′ ≥ 0

(D)

 max bT y
s.t. (A′)T y + s′ = c′,

s′ ≥ 0

• The above analysis implies that, starting from a feasible solution (x̄, s̄), one can change the
(P ) and (D) program, making (e, s′) a feasible solution to the new program.

• Since e = x̄X−1 and s′ = s̄X, we have x̄j s̄j = s′j , the duality gap G(x̄, s̄) = G(e, s′).

• In this transformed space, all points are far from the boundaries.
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7 Q4: How to make a gradient descent step

7.1 Primal descent

• Starting from (e, s′), and recall G(x, s) = q log(xT s)−
∑n

j=1 log(xjsj).

•
g = ∇xG(s, x)|(e,s′) =

( q

xT s
s− (1/x1, . . . , 1/xn)

)∣∣∣
(e,s′)

=
q

eT s′
s′ − e

• To maximize the change in G, we want to move in the direction of −g.

• However, we need to insure the new point is still feasible (i.e. Ax = b) still holds.

• Let d be the projection of g onto the null space {x : Ax = 0}.

•

Claim 5. d = (I −AT (AAT )−1A)g

Proof. g − d must be orthogonal to the null space of A, and thus being some combination of
row vectors of A. {

Ad = 0,
∃w s.t. ATw = g − d ⇒ (AAT )w = Ag

Solving the equation we get w = (AAT )−1Ag and thus d = g − AT (AAT )−1Ag = (I −
AT (AAT )−1A)g.

• If ‖d‖2 =
√
dT d ≥ 0.4, we make a primal step:{

x̃ = e− 1
4‖d‖d

s̃ = s′

• Observe that x̃ > 0, because x̃j = 1− 1
4

dj

‖d‖ ≥ 3/4 > 0.

•

Lemma 6. When making a primal step, G(x̃, s̃)−G(e, s′) ≤ − 7
120 .

7.2 Dual descent

• If ‖d‖2 < 0.4, we make a dual step. But let us compute the gradient first:

h = ∇sG(x, s)|(e,s′) =
q

eT s′
e− (1/s′1, 1/s

′
2, . . . , 1/s

′
n)

• Notice that hj = gj/sj , and thus h and g can be “seen” to be approximately in the same
direction.

• Need to maintain the feasibility of (D): AT y + s = c. We want:{
AT ỹ + s̃ = c
⇒ s̃− s′ = AT (ỹ − y′)

• This means, the change s̃− s′ should be in the image space of AT (and thus perpendicular to
the null space). Let us move in the direction of −(g − d).
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• Recall that (g − d) = ATw = AT (AAT )−1Ag, we choose ỹ = y′ + µw and s̃ = s′ − (g − d)µ.

• We choose some magic number µ = eT s′

q , and:
s̃ = s′ − eT s′

q (g − d)

= s′ − eT s′

q (q s′

eT s′
− e− d)

= eT s′

q (d+ e)

x̃ = e

• Similarly, we have s̃ > 0 (using ‖d‖ < 0.4).

•

Lemma 7. When making a dual step, G(x̃, s̃)−G(e, s′) ≤ − 1
6 .

7.3 Missing proofs

Fact 8.

∀|x| ≤ a < 1, −x− x2

2(1− a)
≤ log(1− x) ≤ −x

Proof of Lemma 6.

G(x̃, s̃)−G(e, s′) = G(e− 1

4‖d‖
d, s′)−G(e, s′)

= q log

(
eT s′ − dT s′

4‖d‖

)
−

n∑
j=1

log

(
1− dj

4‖d‖

)
−

n∑
j=1

log s′j

−q log(eT s′) +

n∑
j=1

log 1 +

n∑
j=1

log s′j

= q log

(
1− dT s′

4‖d‖eT s′

)
−

n∑
j=1

log

(
1− dj

4‖d‖

)
(using the above fact for a = 1/4)

≤ − qdT s′

4‖d‖eT s′
+

n∑
j=1

dj
4‖d‖

+

n∑
j=1

d2
j

16‖d‖22(3/4)

= − qdT s′

4‖d‖eT s′
+

eT d

4‖d‖
+

1

24

=
1

4‖d‖

(
e− q

eT s′
s′
)T

d+
1

24

=
1

4‖d‖
(−g)T d+

1

24
= −‖d‖

2

4‖d‖
+

1

24
≤ − 1

10
+

1

24
= − 7

120

Notice that, this is nothing but saying that, the size of the descent should be proportional to the
direction d dot product the gradient g, if we ignore the second order derivative.
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Proof of Lemma 7. Recall that s̃ = eT s′

q (d+ e). We first compute that

n∑
j=1

log(s̃j)− n log
(eT s̃
n

)
=

n∑
j=1

log(1 + dj)− n log(1 +
eT d

n
)

≥
n∑

j=1

(dj −
d2
j

2(3/5)
)− ne

T d

n

= −‖d‖
2

6/5
≥ − 2

15

On the other hand, we have
∑n

j=1 log(s̃j)−n log
(
eT s̃
n

)
≤ 0 by Jensen’s inequality. Now we can start

to compute:

G(e, s̃)−G(e, s′) = q log
( eT s̃
eT s′

)
−

n∑
j=1

log(s̃j) +

n∑
j=1

log(s′j)

≤ q log
( eT s̃
eT s′

)
+

2

15
− n log

(eT s̃
n

)
+ n log

(eT s′
n

)
(recall q = n+

√
n)

=
2

15
+
√
n log

( eT s̃
eT s′

)
=

2

15
+
√
n log

(1

q
(n+ eT d)

)
≤ 2

15
+
√
n log

(
1

n+
√
n

(n+ 0.4
√
n)

)
(using |eT d| ≤ ‖e‖‖d‖ =

√
n‖d‖)

≤ 2

15
+
√
n log

(
1− 0.6

√
n

n+
√
n

)
≤ 2

15
− 0.6n

n+
√
n
≤ 2

15
− 3

10
= −1

6

8 Final analysis

• We have O(
√
nL) iterations and each having a O(n3) time Gaussian elimination.

• Wait! Operations are not atomic. For instance,

• The two norm ‖d‖ involves irrational operations

– This can be taken care by the fact that, we can change from 0.4 to 0.399 and all the
results still go through.

– Therefore, we only need to compute d to the first a few bits.

• The complexity for Gaussian elimination requires O(n3) arithmetic operations (each arithmetic
operation costs O(L) in fact).

• Wait! Does the gradient descent steps increase the bit complexity?

• Yes, but we can round things down to 2L, without affecting the duality gap too much.

• Yinyu Ye has an O(n3L)-algorithm in his seminal paper http://www.springerlink.com/

content/n577730515780778/fulltext.pdf.
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