Optional Lecture 3: Interior Point Method

Lecturer: Zeyuan Allen Zhu
Scribe: Zeyuan Allen Zhu

Disclaimer: These lecture notes have not been fully checked by Zeyuan.

1 References

This file of notes serves as a reference for Zeyuan himself about the materials to be delivered in class. It copies a lot of materials from Prof Michel X. Goemans' lecture notes on 6.854 in 1994, (see http: //www-math.mit.edu/~goemans/notes-lp.ps), and Prof Sven O. Krumke's report on interior point methods (see http://optimierung.mathematik.uni-kl.de/~krumke/Notes/interior-lecture. pdf).

Ye's interior point algorithm achieves the best known asymptotic running time in the literature, and this presentation incorporates some simplifications made by Freund.

2 Introduction

- $O\left(n^{6} L\right)$ complexity for ellipsoid, $O(\sqrt{n} L) \times O\left(n^{3}\right)$ complexity of interior point method.
- Only describe for LP today, and can be generalized to SDP and other convex programming.
- Primal / Dual:

$$
(P)\left\{\begin{array} { l c c }
{ \operatorname { m i n } } & { c ^ { T } x } \\
{ \text { s.t. } } & { A x = b , } \\
{ } & { x \geq 0 }
\end{array} \quad (D) \left\{\begin{array}{lc}
\max & b^{T} y \\
\text { s.t. } & A^{T} y+s=c \\
& s \geq 0
\end{array}\right.\right.
$$

- Assume here that A is of full row-rank, A is $m \times n$, with $m \leq n$.
- A primal-dual algorithm, keeping track of (\bar{x}, \bar{s}) such that $\bar{x}>0$ and $\bar{s}>0$ (i.e., $\exists \bar{y}: A^{T} \bar{y}=$ $c-\bar{s})$.
- Stay away from the boundary of the polytope, and thus making the duality gap $c^{T} \bar{x}-b^{T} \bar{y}=$ $\bar{x}^{T} \bar{s}>0$.
- Define a potential function $G(x, s):=q \log \left(x^{T} s\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)$.
- Choose $q=n+\sqrt{n}$ in order to guarantee $O(\sqrt{n} L)$ iterations.

3 The high-level description

- Start from some feasible solution
- The primal/dual may not always be feasible!
- It may be hard to find a feasible solution!
- The starting potential might be huge!
- Please refer to http://www-math.mit.edu/~goemans/18415/18415-FALL01/init-lp. ps.
- Claim: can always turn the problem into a feasible primal/dual pair, with a starting potential of $O(\sqrt{n} L)$.
- At each iteration,
- Scale from (\bar{x}, \bar{s}) to (e, s^{\prime}) using affine transformation (Q3).
- Compute the gradient $g=\left.\nabla_{x} G(x, s)\right|_{\left(e, s^{\prime}\right)}$ (which is actually the "same" as $\left.\left.\nabla_{s} G(x, s)\right|_{\left(e, s^{\prime}\right)}\right)$. (Q4)
- If the projection of g on the primal feasible subspace $(A x=b)$ is large, make a primal gradient descent step. (Q4)
- Otherwise, make a dual gradient descent step. (Q4)
- Stop until the potential is smaller than $-k \sqrt{n} L$ for some constant k. (Q2)
- Only get an approximate solution so far, turn it into an exact one! (Q1)

4 Q1: What accuracy do we need?

Lemma 1. Let x_{1}, x_{2} be vertices of $A x=b$ and $x \geq 0$. If $c^{T} x_{1} \neq c^{T} x_{2}$, then $\left|c^{T} x_{1}-c^{T} x_{2}\right|>2^{-2 L}$.
Proof. Exists integers q_{1}, q_{2} such that $1 \leq q_{1}, q_{2}<2^{L}$ and $q_{1} x_{1}, q_{2}, x_{2} \in \mathbb{N}$. Therefore:

$$
\left|c^{T} x_{1}-c^{T} x_{2}\right|=\left|\frac{q_{1} q_{2}\left(c^{T} x_{1}-c^{T} x_{2}\right)}{q_{1} q_{2}}\right| \geq \frac{1}{q_{1} q_{2}}
$$

Corollary 2. Let $O P T$ be the optimal answer. If x is a feasible solution to P with $c^{T} x \leq O P T+$ $2^{-2 L}$, then any vertex x^{\prime} such that $c^{T} x^{\prime} \leq c^{T} x$ is an optimal solution of P.

Proof. - Suppose x^{\prime} is not optimal, but some other vertex x^{*} is.

- We have $c^{T} x^{\prime}-c^{T} x^{*}>2^{-2 L}$ according to the lemma.
- It gives $c^{T} x^{\prime}>O P T+2^{-2 L} \geq c^{T} x \geq c^{T} x^{\prime}$.

This corollary tells us that as long as our value is $2^{-2 L}$ close to $O P T$, we are pretty safe: any vertex better than this would be a solution. But how to actually find one? One can adopt the following procedure:

- Let $P(x):=\left\{j: x_{j}>0\right\}$.
- If the columns of A on indices $P(x)$ are linearly independent, then can fill it up to m columns (by adding $m-|P(x)|$ ones). This can be done since A has full row-rank, and will imply that x is already a vertex.
- Otherwise, the columns $\left\{a_{i}: i \in P(x)\right\}$ are linearly dependent: $\sum_{i \in P(x)} \lambda_{i} a_{i}=0$.
- I claim that $x+\delta \cdot \lambda$ is still feasible for small enough $\delta>0$.
- One of the two directions will not increase the objective of (P), and at the same time destroy some coordinate.
- Repeat.

A naive implementation takes time $O\left(n \times n^{3}\right)$ because we might iterate $O(n)$ times and each time do a Gaussian elimination. One can actually be clever and do the Gaussian elimination only once.

5 Q2: How is the potential related to the duality gap

For a generic choice of q, we are uncertain about its behavior when we are getting close to the optimal solution.

Lemma 3. Let $x, s>0$ be vectors in $\mathbb{R}^{n \times 1}$, then

$$
n \log x^{T} s-\sum_{j=1}^{n} \log x_{j} s_{j} \geq n \log n
$$

Proof. $\left(\prod_{j=1}^{n} x_{j} s_{j}\right)^{1 / n} \leq \frac{1}{n}\left(\sum_{j=1}^{n} x_{j} s_{j}\right) \Rightarrow \frac{1}{n}\left(\sum_{j=1}^{n} \log x_{j} s_{j}\right) \leq \log \left(\sum_{j=1}^{n} x_{j} s_{j}\right)-\log n$

- This means, we should choose some $q>n$ and this ensures $G \rightarrow-\infty$ as $x^{T} s \rightarrow 0$.
- $q=n+1$ will result in $O(n L)$ number of iterations.
- $q=n+\sqrt{n}$ will result in $O(\sqrt{n} L)$ number of iterations.
- But when can we stop?

Lemma 4. If $G(x, s) \leq-k \sqrt{n} L$ for some constant k, then $x^{T} s<e^{-k L}$.
Proof. By the previous lemma, $-k \sqrt{n} L \geq \sqrt{n} \log x^{T} s+n \log n \Rightarrow \log x^{T} s \leq-k L-\sqrt{n} \log n<$ $-k L$.

6 Q3: What is an affine transformation?

- Given $\bar{x}>0$, we consider the affine scaling $x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow x^{\prime}=\left(\frac{x_{1}}{\bar{x}_{1}}, \ldots, \frac{x_{n}}{\bar{x}_{n}}\right)$.
- By defining $X=\operatorname{diag}\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\}$:

$$
(P)\left\{\begin{array} { l c c }
{ \operatorname { m i n } } & { c ^ { T } X x ^ { \prime } } \\
{ \text { s.t. } } & { A X x ^ { \prime } = b , } \\
{ } & { x ^ { \prime } \geq 0 }
\end{array} \quad (D) \left\{\begin{array}{cc}
\max & b^{T} y \\
\text { s.t. } & (A X)^{T} y+X s=X c \\
& X s \geq 0
\end{array}\right.\right.
$$

- Also written as (if we define $c^{\prime}=X c, s^{\prime}=X s, A^{\prime}=A X$):

$$
(P)\left\{\begin{array} { l c }
{ \operatorname { m i n } } & { c ^ { \prime T } x ^ { \prime } } \\
{ \text { s.t. } } & { A ^ { \prime } x ^ { \prime } = b , } \\
{ } & { x ^ { \prime } \geq 0 }
\end{array} \quad (D) \left\{\begin{array}{cc}
\max & b^{T} y \\
\text { s.t. } & \left(A^{\prime}\right)^{T} y+s^{\prime}=c^{\prime} \\
& s^{\prime} \geq 0
\end{array}\right.\right.
$$

- The above analysis implies that, starting from a feasible solution (\bar{x}, \bar{s}), one can change the (P) and (D) program, making $\left(e, s^{\prime}\right)$ a feasible solution to the new program.
- Since $e=\bar{x} X^{-1}$ and $s^{\prime}=\bar{s} X$, we have $\bar{x}_{j} \bar{s}_{j}=s_{j}^{\prime}$, the duality gap $G(\bar{x}, \bar{s})=G\left(e, s^{\prime}\right)$.
- In this transformed space, all points are far from the boundaries.

7 Q4: How to make a gradient descent step

7.1 Primal descent

- Starting from $\left(e, s^{\prime}\right)$, and recall $G(x, s)=q \log \left(x^{T} s\right)-\sum_{j=1}^{n} \log \left(x_{j} s_{j}\right)$.

$$
g=\left.\nabla_{x} G(s, x)\right|_{\left(e, s^{\prime}\right)}=\left.\left(\frac{q}{x^{T} s} s-\left(1 / x_{1}, \ldots, 1 / x_{n}\right)\right)\right|_{\left(e, s^{\prime}\right)}=\frac{q}{e^{T} s^{\prime}} s^{\prime}-e
$$

- To maximize the change in G, we want to move in the direction of $-g$.
- However, we need to insure the new point is still feasible (i.e. $A x=b$) still holds.
- Let d be the projection of g onto the null space $\{x: A x=0\}$.
-

Claim 5. $d=\left(I-A^{T}\left(A A^{T}\right)^{-1} A\right) g$
Proof. $g-d$ must be orthogonal to the null space of A, and thus being some combination of row vectors of A.

$$
\left\{\begin{array}{l}
A d=0, \\
\exists w \text { s.t. } A^{T} w=g-d
\end{array} \Rightarrow\left(A A^{T}\right) w=A g\right.
$$

Solving the equation we get $w=\left(A A^{T}\right)^{-1} A g$ and thus $d=g-A^{T}\left(A A^{T}\right)^{-1} A g=(I-$ $\left.A^{T}\left(A A^{T}\right)^{-1} A\right) g$.

- If $\|d\|_{2}=\sqrt{d^{T} d} \geq 0.4$, we make a primal step:

$$
\left\{\begin{array}{l}
\tilde{x}=e-\frac{1}{4\|d\|} d \\
\tilde{s}=s^{\prime}
\end{array}\right.
$$

- Observe that $\tilde{x}>0$, because $\tilde{x}_{j}=1-\frac{1}{4} \frac{d_{j}}{\|d\|} \geq 3 / 4>0$.

Lemma 6. When making a primal step, $G(\tilde{x}, \tilde{s})-G\left(e, s^{\prime}\right) \leq-\frac{7}{120}$.

7.2 Dual descent

- If $\|d\|_{2}<0.4$, we make a dual step. But let us compute the gradient first:

$$
h=\left.\nabla_{s} G(x, s)\right|_{\left(e, s^{\prime}\right)}=\frac{q}{e^{T} s^{\prime}} e-\left(1 / s_{1}^{\prime}, 1 / s_{2}^{\prime}, \ldots, 1 / s_{n}^{\prime}\right)
$$

- Notice that $h_{j}=g_{j} / s_{j}$, and thus h and g can be "seen" to be approximately in the same direction.
- Need to maintain the feasibility of $(D): A^{T} y+s=c$. We want:

$$
\left\{\begin{aligned}
A^{T} \tilde{y}+\tilde{s} & =c \\
\Rightarrow \tilde{s}-s^{\prime} & =A^{T}\left(\tilde{y}-y^{\prime}\right)
\end{aligned}\right.
$$

- This means, the change $\tilde{s}-s^{\prime}$ should be in the image space of A^{T} (and thus perpendicular to the null space). Let us move in the direction of $-(g-d)$.
- Recall that $(g-d)=A^{T} w=A^{T}\left(A A^{T}\right)^{-1} A g$, we choose $\tilde{y}=y^{\prime}+\mu w$ and $\tilde{s}=s^{\prime}-(g-d) \mu$.
- We choose some magic number $\mu=\frac{e^{T} s^{\prime}}{q}$, and:

$$
\left\{\begin{aligned}
\tilde{s} & =s^{\prime}-\frac{e^{T} s^{\prime}}{q}(g-d) \\
& =s^{\prime}-\frac{e^{T^{\prime} s^{\prime}}}{q}\left(q \frac{s^{\prime}}{e^{T} s^{\prime}}-e-d\right) \\
& =\frac{e^{T} s^{\prime}}{q}(d+e) \\
\tilde{x} & =e
\end{aligned}\right.
$$

- Similarly, we have $\tilde{s}>0$ (using $\|d\|<0.4$).

Lemma 7. When making a dual step, $G(\tilde{x}, \tilde{s})-G\left(e, s^{\prime}\right) \leq-\frac{1}{6}$.

7.3 Missing proofs

Fact 8.

$$
\forall|x| \leq a<1, \quad-x-\frac{x^{2}}{2(1-a)} \leq \log (1-x) \leq-x
$$

Proof of Lemma 6.

$$
\begin{aligned}
G(\tilde{x}, \tilde{s})-G\left(e, s^{\prime}\right)= & G\left(e-\frac{1}{4\|d\|} d, s^{\prime}\right)-G\left(e, s^{\prime}\right) \\
= & q \log \left(e^{T} s^{\prime}-\frac{d^{T} s^{\prime}}{4\|d\|}\right)-\sum_{j=1}^{n} \log \left(1-\frac{d_{j}}{4\|d\|}\right)-\sum_{j=1}^{n} \log s_{j}^{\prime} \\
& -q \log \left(e^{T} s^{\prime}\right)+\sum_{j=1}^{n} \log 1+\sum_{j=1}^{n} \log s_{j}^{\prime} \\
= & \left.q \log \left(1-\frac{d^{T} s^{\prime}}{4\|d\| e^{T} s^{\prime}}\right)-\sum_{j=1}^{n} \log \left(1-\frac{d_{j}}{4\|d\|}\right) \quad \quad \quad \text { using the above fact for } a=1 / 4\right) \\
\leq & -\frac{q d^{T} s^{\prime}}{4\|d\| e^{T} s^{\prime}}+\sum_{j=1}^{n} \frac{d_{j}}{4\|d\|}+\sum_{j=1}^{n} \frac{d_{j}^{2}}{16\|d\|^{2} 2(3 / 4)} \\
= & -\frac{q d^{T} s^{\prime}}{4\|d\| e^{T} s^{\prime}}+\frac{e^{T} d}{4\|d\|}+\frac{1}{24} \\
= & \frac{1}{4\|d\|}\left(e-\frac{q}{e^{T} s^{\prime}} s^{\prime}\right)^{T} d+\frac{1}{24} \\
= & \frac{1}{4\|d\|}(-g)^{T} d+\frac{1}{24}=-\frac{\|d\|^{2}}{4\|d\|}+\frac{1}{24} \leq-\frac{1}{10}+\frac{1}{24}=-\frac{7}{120}
\end{aligned}
$$

Notice that, this is nothing but saying that, the size of the descent should be proportional to the direction d dot product the gradient g, if we ignore the second order derivative.

Proof of Lemma 7. Recall that $\tilde{s}=\frac{e^{T} s^{\prime}}{q}(d+e)$. We first compute that

$$
\begin{aligned}
\sum_{j=1}^{n} \log \left(\tilde{s}_{j}\right)-n \log \left(\frac{e^{T} \tilde{s}}{n}\right) & =\sum_{j=1}^{n} \log \left(1+d_{j}\right)-n \log \left(1+\frac{e^{T} d}{n}\right) \\
& \geq \sum_{j=1}^{n}\left(d_{j}-\frac{d_{j}^{2}}{2(3 / 5)}\right)-n \frac{e^{T} d}{n} \\
& =-\frac{\|d\|^{2}}{6 / 5} \geq-\frac{2}{15}
\end{aligned}
$$

On the other hand, we have $\sum_{j=1}^{n} \log \left(\tilde{s}_{j}\right)-n \log \left(\frac{e^{T} \tilde{s}}{n}\right) \leq 0$ by Jensen's inequality. Now we can start to compute:

$$
\begin{aligned}
G(e, \tilde{s})-G\left(e, s^{\prime}\right) & =q \log \left(\frac{e^{T} \tilde{s}}{e^{T} s^{\prime}}\right)-\sum_{j=1}^{n} \log \left(\tilde{s}_{j}\right)+\sum_{j=1}^{n} \log \left(s_{j}^{\prime}\right) \\
& \leq q \log \left(\frac{e^{T} \tilde{s}}{e^{T} s^{\prime}}\right)+\frac{2}{15}-n \log \left(\frac{e^{T} \tilde{s}}{n}\right)+n \log \left(\frac{e^{T} s^{\prime}}{n}\right) \quad \quad(\text { recall } q=n+\sqrt{n}) \\
& =\frac{2}{15}+\sqrt{n} \log \left(\frac{e^{T} \tilde{s}}{e^{T} s^{\prime}}\right)=\frac{2}{15}+\sqrt{n} \log \left(\frac{1}{q}\left(n+e^{T} d\right)\right) \\
& \leq \frac{2}{15}+\sqrt{n} \log \left(\frac{1}{n+\sqrt{n}}(n+0.4 \sqrt{n})\right) \quad\left(\operatorname{using}\left|e^{T} d\right| \leq\|e\|\|d\|=\sqrt{n}\|d\|\right) \\
& \leq \frac{2}{15}+\sqrt{n} \log \left(1-\frac{0.6 \sqrt{n}}{n+\sqrt{n}}\right) \leq \frac{2}{15}-\frac{0.6 n}{n+\sqrt{n}} \leq \frac{2}{15}-\frac{3}{10}=-\frac{1}{6}
\end{aligned}
$$

8 Final analysis

- We have $O(\sqrt{n} L)$ iterations and each having a $O\left(n^{3}\right)$ time Gaussian elimination.
- Wait! Operations are not atomic. For instance,
- The two norm $\|d\|$ involves irrational operations
- This can be taken care by the fact that, we can change from 0.4 to 0.399 and all the results still go through.
- Therefore, we only need to compute d to the first a few bits.
- The complexity for Gaussian elimination requires $O\left(n^{3}\right)$ arithmetic operations (each arithmetic operation costs $O(L)$ in fact).
- Wait! Does the gradient descent steps increase the bit complexity?
- Yes, but we can round things down to 2^{L}, without affecting the duality gap too much.
- Yinyu Ye has an $O\left(n^{3} L\right)$-algorithm in his seminal paper http://www.springerlink.com/ content/n577730515780778/fulltext.pdf.

