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YES, if player’s self-knowledge is APPROXIMATE 
(in single-good auctions) 

TODAY 
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Rolex Auction 

second-price 
mechanism 
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winner is i=2 
→ max social welfare 

winner = player with max bid 
winner’s price = 2nd highest bid 

bidding true valuation is a (very weakly) dominant strategy 
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Does player 2 really know that Pr(16k) = 1.5 Pr(16.6k)? 
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WEAKER ASSUMPTION: Bayesian? 
each player knows his own individual Bayesian 



NEED 
A 

MORE CONSERVATIVE MODEL 



OUR APPROXIMATE KNOWLEDGE MODEL 



1 2 3 𝑛 … 

[7k,9k] {3k,5k} [3.5k,7.7k] {11} 

OUR APPROXIMATE KNOWLEDGE MODEL 

each player approximately knows his valuation 



1 2 3 𝑛 … 

[7k,9k] {3k,5k} [3.5k,7.7k] 

8k ± 12.5% ⋅ 8k 

OUR APPROXIMATE KNOWLEDGE MODEL 

each player approximately knows his valuation 

{11} 



1 2 3 𝑛 … 

[7k,9k] {3k,5k} [3.5k,7.7k] 

8k ± 12.5% ⋅ 8k 4k ± 25% ⋅ 4k 

subset of 

OUR APPROXIMATE KNOWLEDGE MODEL 

each player approximately knows his valuation 

{11} 



1 2 3 𝑛 … 

[7k,9k] {3k,5k} [3.5k,7.7k] 

8k ± 12.5% ⋅ 8k 4k ± 25% ⋅ 4k 

subset of 
0% 38% 

OUR APPROXIMATE KNOWLEDGE MODEL 

each player approximately knows his valuation 

{11} 



1 2 3 𝑛 … 

[7k,9k] {3k,5k} [3.5k,7.7k] 

(above, all players within inaccuracy e.g. 𝛿 = 40%) 

8k ± 12.5% ⋅ 8k 4k ± 25% ⋅ 4k 

subset of 

38% 

OUR APPROXIMATE KNOWLEDGE MODEL 

each player approximately knows his valuation 

approximate knowledge induces inaccuracy param. 𝛿 

0% 

{11} 



1 2 3 𝑛 … 

[7k,9k] {3k,5k} [3.5k,7.7k] 

Q: 
How well can we leverage approximate knowledge? 
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[7k,9k] {3k,5k} [3.5k,7.7k] 

auction 
mechanism 

1 2 3 𝑛 … 
8k 3k 7k 11 

winner=2 (prices=…) worst SW/MSW 
over devil choices 
and rat. bids 

rational bid1 rat.bid2 rat.bid3 rat. bid𝑛 

{11} 



1 2 3 𝑛 … 

How Much SW Can We Guarantee? 

0 𝑀𝑆𝑊 

guaranteed 
social welfare 

0 1 

𝜹 



1 2 3 𝑛 … 

How Much SW Can We Guarantee? 

0 𝑀𝑆𝑊 

guaranteed 
social welfare 

0 1 

𝜹 



1 2 3 𝑛 … 

How Much SW Can We Guarantee? 

0 𝑀𝑆𝑊 

guaranteed 
social welfare 

0 1 

𝜹 



How Much SW Can We Guarantee? 

0 𝑀𝑆𝑊 

𝜀(𝛿, 𝑛) ⋅ 𝑀𝑆𝑊 

𝑇𝑉1 𝑇𝑉2 𝑇𝑉3 𝑇𝑉𝑛 

1 2 3 𝑛 … 

𝐾1 𝐾2 𝐾3 𝐾𝑛 

0 1 

𝜹 

QUESTION (now more precise) 
What is the max 𝜺 𝜹, 𝒏  that we can guarantee? 



Our Results 
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How about dominant strategies? 

1 2 3 𝑛 … 

auction 
mechanism 

? 

{3k,5k} 

Should player 2 bid 3k or 5k? 

What if he can report a set? 
(if reporting the ``true’’ set is dominant, we may be all set…) 
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Theorem 1 
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A New World 

Dominant strategies not useful… 

What other solution concepts could make sense? 

undominated strategies [Jackson, BLP] 
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Harder! 
dominant strategies → ``single’’ mechanism (rev. principle) 

undominated strategies → infinitely many mechanisms 
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Approximate Knowledge 

more adversarial… 

… more work (but doable) 

… more fun! 



Thank you! 





Proving Theorem 3 

A tool for undominated strategy mechanisms 
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                                  there is some unlucky player, say player 5. 

3. Consider WORLD2: all players bid low except player 5. 
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𝑛
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Thm 2: 
Second-price mechanism 
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And it is optimal among 
probabilistic mechanisms 
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𝐾2
′  𝐾3
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Pr 1 wins ≤
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𝑛
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≥ 

≥ 



Lower Bounds on 𝜀 

Thm: Second-price mechanism guarantees 
1−𝛿

1+𝛿

2
⋅ 𝑀𝑆𝑊 

Proof: 
1.  UDed𝑖 𝐾𝑖 ⊂ min𝐾𝑖 , max𝐾𝑖  for every player 𝑖 
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Proof: 
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𝜎𝑖
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𝜎𝑖
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For any 𝜏−𝑖, have three cases: 
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Distinguishable Monotonicity Lemma: 
∀ monotonic∗ 𝑓: ℝ𝑛 → 0,1 𝑛, 𝑀𝑓  satisfies 

UDed𝑖 𝐾𝑖 ⊂ min𝐾𝑖 , max𝐾𝑖  

Lower Bound Tool 



Lower Bounds on 𝜀 

Thm: Our mechanism guarantees 
1−𝛿 2+

4𝛿

𝑛

1+𝛿 2 ⋅ 𝑀𝑆𝑊 

Proof: 
… where to start? 

Distinguishable Monotonicity Lemma: 
∀ monotonic∗ 𝑓: ℝ𝑛 → 0,1 𝑛, 𝑀𝑓  satisfies 

UDed𝑖 𝐾𝑖 ⊂ min𝐾𝑖 , max𝐾𝑖  

Lower Bound Tool 

Task reduces to designing a good 𝑓 



Lower Bounds on 𝜀 

Designing 𝑓: 
When bids are close to each other: give good at random. 

When there is a “clear winner”: act like second-price. 

If neither: interpolate in a smart way. 

Distinguishable Monotonicity Lemma: 
∀ monotonic∗ 𝑓: ℝ𝑛 → 0,1 𝑛, 𝑀𝑓  satisfies 
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Lower Bounds on 𝜀 

Designing 𝑓: 
When bids are close to each other: give good at random. 

When there is a “clear winner”: act like second-price. 

If neither: interpolate in a smart way. 

Distinguishable Monotonicity Lemma: 
∀ monotonic∗ 𝑓: ℝ𝑛 → 0,1 𝑛, 𝑀𝑓  satisfies 

UDed𝑖 𝐾𝑖 ⊂ min𝐾𝑖 , max𝐾𝑖  

This is delicate. In every “intermediate case”, need to: 
1) ensure the target social welfare, and 
2) ensure distinguishable monotonicity. 

Lower Bound Tool 
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Our Optimal Mechanism 

1. On input bids 𝑣1, 𝑣2, … , 𝑣𝑛 , WLOG 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛. 
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Our Optimal Mechanism 

1. On input bids 𝑣1, 𝑣2, … , 𝑣𝑛 , WLOG 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛. 
 

2. Find “magic” threshold 𝑛∗ s.t.  
𝑣𝑖 >

 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  1 ≤ 𝑖 ≤ 𝑛∗

𝑣𝑖 ≤
 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  𝑛∗ < 𝑖 ≤ 𝑛

 

 

 
1, 2, 3, …, 𝑛∗ 

 
𝑛∗ + 1, …, 𝑛 

“10000m” view: 



Our Optimal Mechanism 

1. On input bids 𝑣1, 𝑣2, … , 𝑣𝑛 , WLOG 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛. 
 

2. Find “magic” threshold 𝑛∗ s.t.  
𝑣𝑖 >

 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  1 ≤ 𝑖 ≤ 𝑛∗

𝑣𝑖 ≤
 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  𝑛∗ < 𝑖 ≤ 𝑛

 

 

3. Assign good to only “candidate winning” players 1,2, … , 𝑛∗ 
where player 𝑖 ∈ 1,2,… , 𝑛∗  wins with “magic” probability: 
 
 

 

candidate winners 
1, 2, 3, …, 𝑛∗ 

losers 
𝑛∗ + 1, …, 𝑛 

“10000m” view: 



Our Optimal Mechanism 

1. On input bids 𝑣1, 𝑣2, … , 𝑣𝑛 , WLOG 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛. 
 

2. Find “magic” threshold 𝑛∗ s.t.  
𝑣𝑖 >

 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  1 ≤ 𝑖 ≤ 𝑛∗

𝑣𝑖 ≤
 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  𝑛∗ < 𝑖 ≤ 𝑛

 

 

3. Assign good to only “candidate winning” players 1,2, … , 𝑛∗ 
where player 𝑖 ∈ 1,2,… , 𝑛∗  wins with “magic” probability: 
 
 

 

candidate winners 
1, 2, 3, …, 𝑛∗ 

losers 
𝑛∗ + 1, …, 𝑛 

“10000m” view: 



Our Optimal Mechanism 

1. On input bids 𝑣1, 𝑣2, … , 𝑣𝑛 , WLOG 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛. 
 

2. Find “magic” threshold 𝑛∗ s.t.  
𝑣𝑖 >

 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  1 ≤ 𝑖 ≤ 𝑛∗

𝑣𝑖 ≤
 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  𝑛∗ < 𝑖 ≤ 𝑛

 

 

3. Assign good to only “candidate winning” players 1,2, … , 𝑛∗ 
where player 𝑖 ∈ 1,2,… , 𝑛∗  wins with “magic” probability: 
 

𝑓𝑖 𝑣 =
1

𝑛
⋅
𝑛 + 𝐷 𝛿

𝑛∗ + 𝐷 𝛿
⋅
𝑣𝑖 𝑛∗ + 𝐷 𝛿 −  𝑣𝑗

𝑛∗

𝑗=1

𝑣𝑖𝐷 𝛿
 

 

 

candidate winners 
1, 2, 3, …, 𝑛∗ 

losers 
𝑛∗ + 1, …, 𝑛 

“100m” view: 



Our Optimal Mechanism 

1. On input bids 𝑣1, 𝑣2, … , 𝑣𝑛 , WLOG 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛. 
 

2. Find “magic” threshold 𝑛∗ s.t.  
𝑣𝑖 >

 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  1 ≤ 𝑖 ≤ 𝑛∗

𝑣𝑖 ≤
 𝑣𝑗
𝑛∗
𝑗=1

𝑛∗+𝐷 𝛿
  for all  𝑛∗ < 𝑖 ≤ 𝑛

 

 

3. Assign good to only “candidate winning” players 1,2, … , 𝑛∗ 
where player 𝑖 ∈ 1,2,… , 𝑛∗  wins with “magic” probability: 
 

𝑓𝑖 𝑣 =
1

𝑛
⋅
𝑛 + 𝐷 𝛿

𝑛∗ + 𝐷 𝛿
⋅
𝑣𝑖 𝑛∗ + 𝐷 𝛿 −  𝑣𝑗

𝑛∗

𝑗=1

𝑣𝑖𝐷 𝛿
 

 

Easy to evaluate, just like the second-price mechanism! 

candidate winners 
1, 2, 3, …, 𝑛∗ 

losers 
𝑛∗ + 1, …, 𝑛 

“100m” view: 



Our Optimal Mechanism 
“1m” view: 



Our Optimal Mechanism 
“1m” view: 

QED 



𝐾1 = 600,1000  

Approximate Valuations 

single-good auction 

outcome 

𝐾1 ⊂ 1 − 𝛿 800, 1 + 𝛿 800   

yard sale 

Example 2/3: 

𝑇𝑉1 

1 

𝑥 − 𝛿𝑥 𝑥 + 𝛿𝑥 0 

𝑥 

different from Bayesian! 

Pr
police in another
neighborhood

? 

…
 

Pr
police is on
lunch break

? 

Pr
police chasing

a thief
? 


