Mechanism Design with Approximate Valuations

Alessandro Chiesa
Silvio Micali
Zeyuan Allen Zhu

Mechanism Design

generate good outcomes for data you don't have

Mechanism Design

generate good outcomes for data you don't have by leveraging the players' KNOWLEDGE and RATIONALITY

Mechanism Design

generate good outcomes for data you don't have by leveraging the players'
KNOWLEDGE and RATIONALITY

classically

YES, if player's self-knowledge is EXACT

Mechanism Design

generate good outcomes for data you don't have by leveraging the players'
KNOWLEDGE and RATIONALITY

classically

YES, if player's self-knowledge is EXACT

TODAY

YES, if player's self-knowledge is APPROXIMATE
(in single-good auctions)

Rolex Auction

GOAL

give Rolex to player who values it the most (max. social welfare)

1

Rolex Auction

GOAL

give Rolex to player who values it the most (max. social welfare)

Rolex Auction

GOAL

give Rolex to player who values it the most (max. social welfare)

Rolex Auction

use auction mechanism to extract information from the players

Rolex Auction

Rolex Auction

bidding true valuation is a (very weakly) dominant strategy

Rolex Auction

bidding true valuation is a (very weakly) dominant strategy

Rolex Auction

winner = player with max bid
winner's price $=2^{\text {nd }}$ highest bid

bidding true valuation is a (very weakly) dominant strategy

WARNING!

optimal performance from an

 ASSUMPTION:
WARNING!

optimal performance from an ASSUMPTION:

each player knows his own valuation exactly

WARNING!

optimal performance from an ASSUMPTION:

each player knows his own valuation exactly

WARNING!

optimal performance from an ASSUMPTION:

each player knows his own valuation exactly

Either:

(a) it does not make any difference (b) exact knowledge is VERY strong assumption

WARNING!

optimal performance from an ASSUMPTION:

each player knows his own valuation exactly

Either:

(a) it does not make any difference(b) exact knowledge is VERY strong assumption

WEAKER ASSUMPTION: Bayesian? each player knows his own individual Bayesian

WEAKER ASSUMPTION: Bayesian?

 each player knows his own individual Bayesian same second-price mechanism: just truthfully bid your expected value

WEAKER ASSUMPTION: Bayesian?

 each player knows his own individual Bayesian

Does player 2 really know that $\operatorname{Pr}(16 \mathrm{k})=1.5 \operatorname{Pr}(16.6 \mathrm{k})$?
If no, and it matters, still very strong!

NEED

A
 MORE CONSERVATIVE MODEL

OUR APPROXIMATE KNOWLEDGE MODEL

OUR APPROXIMATE KNOWLEDGE MODEL

each player approximately knows his valuation

OUR APPROXIMATE KNOWLEDGE MODEL

each player approximately knows his valuation

$8 k \pm 12.5 \% \cdot 8 k$

$\{11\}$

OUR APPROXIMATE KNOWLEDGE MODEL

each player approximately knows his valuation

subset of
$8 k \pm 12.5 \% \cdot 8 k \quad 4 k \pm 25 \% \cdot 4 k$

OUR APPROXIMATE KNOWLEDGE MODEL

 each player approximately knows his valuation

OUR APPROXIMATE KNOWLEDGE MODEL

 each player approximately knows his valuation
approximate knowledge induces inaccuracy param. δ (above, all players within inaccuracy e.g. $\delta=40 \%$)

OUR APPROXIMATE KNOWLEDGE MODEL

 each player approximately knows his valuation

Q:

How well can we leverage approximate knowledge?

HOW TO MEASURE PERFORMANCE?

auction
 mechanism

\{11\}

ADVERSARIAL PERFORMANCE MEASURE

ADVERSARIAL PERFORMANCE MEASURE

auction
 mechanism

ADVERSARIAL PERFORMANCE MEASURE

winner=? (prices=...)

ADVERSARIAL PERFORMANCE MEASURE

winner=2 (prices=...)

ADVERSARIAL PERFORMANCE MEASURE

ADVERSARIAL PERFORMANCE MEASURE

winner=2 (prices=...) worst SW/MSW

How Much SW Can We Guarantee?

QUESTION (now more precise)
What is the $\max \varepsilon(\delta, n)$ that we can guarantee?

Our Results

How about dominant strategies?

Should player 2 bid 3k or 5k?

How about dominant strategies?

Should player 2 bid 3 k or 5 k ?
What if he can report a set?
(if reporting the "true" set is dominant, we may be all set...)

Old Theorem

if $\delta=0 \exists$ dominant-strategy mechanism guaranteeing 100\% •MSW

New Theorem
 if $\delta>0 \exists$ dominant-strategy mechanism guaranteeing $(1-\delta) \cdot M S W$?

New Theorem
 if $\delta>0 \exists$ dominant-strategy mechanism guaranteeing $(1-\delta)^{2} \cdot M S W ?$

New Theorem

if $\delta>0 \exists$ dominant-stratoov moohartism guaranteeing

$$
(1-\delta)^{2} \cdot M S W ?
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy
mechanism guarantees at most $\frac{1}{n} \cdot M S W$

New Theorem

if $\delta>0 \exists$ dominant-stratoov moohartism guaranteeing

$$
(1-\delta)^{2} \cdot M S W
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy

$$
\text { mechanism guarantees at most } \frac{1}{n} \cdot M S W
$$

Remark 1: dominant-strategy mechanism exist
Remark 2: they perform terribly!
a random assignment trivially guarantees $\frac{1}{n}$

New Theorem

if $\delta>0 \exists$ dominant-stratoov moohartism guaranteeing

$$
(1-\delta)^{2} \cdot M S W
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy

$$
\text { mechanism guarantees at most } \frac{1}{n} \cdot M S W
$$

Interpretation

dominant strategy useful
iff
exact knowledge or Bayesian

New Theorem

if $\delta>0 \exists$ dominant-stratoav monharistnguaranteeing

$$
(1-\delta)^{2} \cdot M S W
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy

$$
\text { mechanism guarantees at most } \frac{1}{n} \cdot M S W
$$

$70(1 \pm 0.1) ?$

Interpretation

dominant strategy useful
iff
exact knowledge or Bayesian

New Theorem

if $\delta>0 \exists$ dominant-stratoov mocharistr guaranteeing

$$
(1-\delta)^{2} \cdot M S W ?
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy

$$
\text { mechanism guarantees at most } \frac{1}{n} \cdot M S W
$$

$70(1 \pm 0.1)$
$70(1 \pm 0.01)$?

Interpretation

dominant strategy useful
iff
exact knowledge or Bayesian

New Theorem

if $\delta>0 \exists$ dominant-stratoov mogharistig guaranteeing

$$
(1-\delta)^{2} \cdot M S W
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy

$$
\text { mechanism guarantees at most } \frac{1}{n} \cdot M S W
$$

$70(1 \pm 0.1)$	
$70(1 \pm 0.01)$	
$70(1 \pm 0.001) ?$	Interpretation dominant strategy useful iff
exact knowledge or Bayesian	

New Theorem

if $\delta>0 \exists$ dominant-stratoov mogharistig guaranteeing

$$
(1-\delta)^{2} \cdot M S W
$$

Theorem 1
$\forall \delta>0$, every dominant-strategy

$$
\text { mechanism guarantees at most } \frac{1}{n} \cdot M S W
$$

A New World

Dominant strategies not useful...
What other solution concepts could make sense? undominated strategies [Jackson, BLP]

Undominated Strategies

Undominated Strategies

Undominated Strategies

Undominated Strategies

Undominated Strategies

Undominated Strategies

Undominated Strategies

Undominated Strategies

Undominated Strategies

Thm 2: Second-price mechanism in
undominated strats. guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Thm 2: Second-price mechanism in

 much better!!
(note that the second-price mechanism is not dominant-strategy anymore!)

Thm 2: Second-price mechanism in

 much better!!
(note that the second-price mechanism is not dominant-strategy anymore!)
\Rightarrow a new role for undominated strategies!

Thm 2: Second-price mechanism in

undominated strats. guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Thm 3: \forall deterministic undom. strat. mechanism
guarantees no more than $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Harder!

dominant strategies \rightarrow " single" mechanism (rev. principle) undominated strategies \rightarrow infinitely many mechanisms

Thm 2: Second-price mechanism in
undominated strats. guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Thm 3: \forall deterministic undom. strat. mechanism
guarantees no more than $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

And with randomness?

Implementation in Undomin. Strat's

Thm 4: Our mechanism in undom.
strategies guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

$$
\begin{array}{cll}
\delta=0.5 & n=2 & 5 \text { times better } \\
\delta=0.5 & n=4 & 3 \text { times better } \\
\delta=0.25 & n=2 & 2 \text { times better }
\end{array}
$$

Implementation in Undomin. Strat's

Thm 4: Our mechanism in undom.
strategies guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

Thm 5: \forall probabilistic undom. strat. mechanism guarantees no more than $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

Summary

Dominant Strategies

Thm 1: Dominant Strategies don't work

Undominated Strategies

Thm 2: Second-price mechanism
guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
Thm 4: Our mechanism
guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

Thm 3: \& it is optimal among deterministic mechanisms

Thm 5: \& it is optimal among probabilistic mechanisms

Summary

Dominant Strategies

Thm 1: Dominant Strategies don't work

Undominated Strategies

Thm 2: Second-price mechanism
guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
Thm 4: Our mechanism
guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

Thm 3: \& it is optimal among deterministic mechanisms

Thm 5: \& it is optimal among probabilistic mechanisms

Structural Theorems

understanding undominated strategies with approximate knowledge

Summary

Dominant Strategies

Thm 1: Dominant Strategies don't work

Undominated Strategies

Thm 2: Second-price mechanism
guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
Thm 4: Our mechanism
guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
Lower Bound Tool:
Distinguishable Monotonicity Lemma

Thm 3: \& it is optimal among deterministic mechanisms

Thm 5: \& it is optimal among probabilistic mechanisms

Structural Theorems

understanding undominated strategies with approximate knowledge

Summary

Dominant Strategies

Thm 1: Dominant Strategies don't work

Undominated Strategies

Thm 2: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Thm 4: Our mechanism
guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
Lower Bound Tool:
Distinguishable Monotonicity Lemma

Thm 3: \& it is optimal among \uparrow deterministic mechanisms

Thm 5: \& it is optimal among probabilistic mechanisms

Upper Bound Tool:
Undominated Intersection Lemma

Structural Theorems

understanding undominated strategies with approximate knowledge

Summary

Dominant Strategies

Thm 1: Dominant Strategies don't work

Undominated Strategies

Thm 2: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Thm 4: Our mechanism
guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
Lower Bound Tool:
Distinguishable Monotonicity Lemma

Thm 3: \& it is optimal among deterministic mechanisms

Thm 5: \& it is optimal among probabilistic mechanisms

Upper Bound Tool:
Undominated Intersection Lemma

Structural Theorems

understanding undominated strategies with approximate knowledge

Proving Theorem 3

Undominated Intersection Lemma:
$\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Proving Theorem 3

Undominated Intersection Lemma:
$\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \varnothing$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \varnothing$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

;

Proving Theorem 3

Undominated Intersection Lemma:

$$
\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Longrightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset
$$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

$$
K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]
$$

σ_{1}
(-)

σ_{2}
σ_{3}

$$
\begin{aligned}
& M S W=(1+\delta) x \\
& S W=\frac{(1-\delta)^{2}}{1+\delta} x \\
& \Rightarrow \varepsilon \leq\left(\frac{1-\delta}{1+\delta}\right)^{2}
\end{aligned}
$$

Deterministic: QED

Approximate Knowledge

more adversarial...
... more work (but doable) ... more fun!

Thank you!

Proving Theorem 3

Will use:

Undominated Intersection Lemma:

A tool for undominated strategy mechanisms

- No revelation principle to help
- Need to apply to all mechanisms

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Longrightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Proving Theorem 3

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Longrightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Recall Theorem 3:
in undominated strategies, no deterministic mechanism
guarantees more than $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, someone is unlucky, WLOG player 1

$\operatorname{Pr}[1$ wins $]=0 \oslash$

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

$$
\operatorname{Pr}[1 \text { wins }]=0 \bigodot
$$

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

$$
\operatorname{Pr}[1 \text { wins }]=0 \ominus
$$

Proving Theorem 3

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing ($\sigma_{1}, \sigma_{2}, \sigma_{3}$), someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

σ_{1}

$$
\operatorname{Pr}[1 \mathrm{wins}]=0 \bigodot
$$

$$
\begin{aligned}
& M S W=(1+\delta) x \\
& S W=\frac{(1-\delta)^{2}}{1+\delta} x \\
& \Rightarrow \varepsilon \leq\left(\frac{1-\delta}{1+\delta}\right)^{2}
\end{aligned}
$$

Deterministic: QED

Recall...

Recall...

Recall...

Goal:

1

1. Motivation

Today's focus

Today's focus

Today's focus

Within 1% or 10% or 25%...

Approximate Types

Approximate Types

Approximate Valuations

$T V_{i}:=$ "true valuation for player i "
$K_{i}:=$ "approximate valuation for player i "

Approximate Valuations

outcome \in high social welfare

single-good auction
$T V_{i}:=$ "true valuation for player i "
$K_{i}:=$ "approximate valuation for player i "

Approximate Valuations

Approximate Valuations

Example 2:

Approximate Valuations

Approximate Valuations

constructible plot of land

Approximate Valuations

Approximate Valuations

$$
K_{1}=\left[1 \times 10^{9}, 3 \times 10^{9}\right]
$$

Approximate Valuations

Approximate Valuations (summary)

outcome

Approximate Valuations (summary)

approximation inaccuracy δ is:

- guaranteed
- known to the designer

3. Our Question

Which Social Welfare?

Which Social Welfare?

the devil's choice (worst case choice)

How Much SW Can We Get?

$\Rightarrow \begin{aligned} & \delta=0 \\ & \Rightarrow \text { guaranteed } S W \text { is maximum }\end{aligned}$
(by the second-price mechanism)

How Much SW Can We Get?

$\begin{array}{ll} & \delta \text { increases } \\ \Rightarrow & \text { guaranteed } S W \text { decreases }\end{array}$

How Much SW Can We Get?

$\begin{array}{ll} & \delta \text { increases } \underline{\text { further }} \\ \Rightarrow & \text { guaranteed } S W \text { decreases further }\end{array}$

How Much SW Can We Get?

outcome

Our Question

What is the best $\varepsilon(\boldsymbol{\delta}, n)$?

Our Question

Under which solution concepts should we ask the question?

Our Question

What is the best $\varepsilon(\delta, n)$?

Under which solution concepts should we ask the question?
(non-Bayesian) incomplete information,
so two natural notions to consider:

1. implementation in dominant strategies
2. implementation in undominated strategies

Our Question

What is the best $\varepsilon(\delta, n)$?

Under which solution concepts should we ask the question?
(non-Bayesian) incomplete information,
so two natural notions to consider:

1. implementation in dominant strategies
2. implementation in undominated strategies
(3. ex-post NE reduces to dominant strategies)

4. Our Results

Our Results

Implementation in ...

... Dominant Strategies

Our Results

Implementation in ...

... Dominant Strategies

Our Results

Implementation in ...

... Dominant Strategies

Our Results

Implementation in ...

... Dominant Strategies

Our Results

Implementation in ...

... Dominant Strategies
irrelevant!?

Our Results

Implementation in ...

... Dominant Strategies

irrelevant!?

maybe not ... as there is more to reveal

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Can guarantee $\varepsilon(\delta, n) \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1: Can guarantee (?) MSW ?

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Can guarantee $(1-\delta) \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Thm 1:
Can guarantee $\left(\frac{1-\delta}{1+\delta}\right) \cdot M S W ?$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Can guarantee $\frac{(1-\delta)^{5}}{(1+\delta)^{3}} \cdot M S W$?

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random (after all, some player has the highest valuation!)

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random (after all, some player has the highest valuation!)

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random
(after all, some player has the highest valuation!)
$70(1 \pm 0.1)$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random
(after all, some player has the highest valuation!)

$$
\begin{gathered}
70(1 \pm 0.1) \\
70(1 \pm 0.01)
\end{gathered}
$$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random
(after all, some player has the highest valuation!)
\(\left.$$
\begin{array}{c}70(1 \pm 0.1) \\
70(1 \pm 0.01) \\
70(1 \pm 0.001)\end{array}
$$ \begin{array}{c}Interpretation:

dominant strategy

if and only if\end{array}\right\}\)| exact knowledge of valuation |
| :---: |
| or individual Bayesian |

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random
(after all, some player has the highest valuation!)

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random
(after all, some player has the highest valuation!)

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Terrible!
can trivially achieve by assigning good at random
(after all, some player has the highest valuation!)

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies
... Undominated Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
much better!!
(note that the second-price mechanism is not dominant-strategy anymore!)

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ much better!!
\Rightarrow a new role for undominated strategies!
(note that the second-price mechanism is not dominant-strategy anymore!)

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees
even better!!! $\longrightarrow \frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees
even better!!! $\longrightarrow \frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
- And it is optimal among probabilistic mechanisms

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
- And it is optimal among probabilistic mechanisms

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
- And it is optimal among probabilistic mechanisms

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$
Upper Bound Tool:
Undominated Intersection Lemma
Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
Thm 3:
\ominus Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Full version at http://arxiv.org/abs/1112.1147

5. Our Techniques

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Upper Bound Tool

- A tool for undominated strategy mechanisms
- No revelation principle to help
- Need to apply to all mechanisms

Upper Bound Tool

- A tool for undominated strategy mechanisms
- No revelation principle to help
- Need to apply to all mechanisms

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

all strategies of player i given by mechanism M_{1}

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

all strategies of player i given by mechanism M_{1}

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Longrightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Longrightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

all strategies of player i given by mechanism M_{2}

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Upper Bound Tool

Tool \#1

Undominated Intersection Lemma:
 $\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Rightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

Example:

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Lower Bound Tool

- Establishing lower bounds on ε involves (possibly finding and then) analyzing mechanisms
- DIFFICULTY: understanding the set of undominated strategies is not an easy task

Lower Bound Tool

- Establishing lower bounds on ε involves (possibly finding and then) analyzing mechanisms
- DIFFICULTY: understanding the set of undominated strategies is not an easy task

Lower Bound Tool

- Establishing lower bounds on ε involves (possibly finding and then) analyzing mechanisms
- DIFFICULTY: understanding the set of undominated strategies is not an easy task

Lower Bound Tool

- Establishing lower bounds on ε involves (possibly finding and then) analyzing mechanisms
- DIFFICULTY: understanding the set of undominated strategies is not an easy task

Lower Bound Tool

Tool \#2

Approximate truthfulness: $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

What if...

Lower Bound Tool

Tool \#2

Distinguishable Monotonicity Lemma:
For any mechanism satisfying good property: $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

What if...

Lower Bound Tool

Tool \#2

Distinguishable Monotonicity Lemma:
For any mechanism satisfying good property: $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

Examples:

Lower Bound Tool

Tool \#2

Distinguishable Monotonicity Lemma:
For any mechanism satisfying good property: $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

What property?

Lower Bound Tool

Tool \#2

Distinguishable Monotonicity Lemma:
For any mechanism satisfying good property: $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Recall a classical result:
\forall monotonic $f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ is DST

Lower Bound Tool

Tool \#2

Distinguishable Monotonicity Lemma:

For any mechanism satisfying good property: $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Recall a classical result:

$$
\forall \text { monotonic } f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f} \text { is DST }
$$

- How does M_{f} look like? On input bid-profile v
- Player i wins w.p. $f_{i}(v)$;
- Player i (if wins), pays $v_{i}-\frac{1}{f_{i}(v)} \int_{z=0}^{v_{i}} f_{i}\left(z \sqcup v_{-i}\right) d z$

Lower Bound Tool

Distinguishable Monotonicity Lemma:

\forall monotonic $f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies
$\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Recall a classical result:
\forall monotonic $f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ is DST
- How does M_{f} look like? On input bid-profile v
- Player i wins w.p. $f_{i}(v)$;
- Player i (if wins), pays $v_{i}-\frac{1}{f_{i}(v)} \int_{z=0}^{v_{i}} f_{i}\left(z \sqcup v_{-i}\right) d z$
- Our result:

Lower Bound Tool

Distinguishable Monotonicity Lemma:

\forall monotonic $^{*} f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies
$\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Recall a classical result:

$$
\forall \text { monotonic } f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f} \text { is DST }
$$

- How does M_{f} look like? On input bid-profile v
- Player i wins w.p. $f_{i}(v)$;
- Player i (if wins), pays $v_{i}-\frac{1}{f_{i}(v)} \int_{z=0}^{v_{i}} f_{i}\left(z \sqcup v_{-i}\right) d z$
- Our result:
* = distinguishably monotonic

Lower Bound Tool

Distinguishable Monotonicity Lemma:

\forall monotonic $^{*} f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies
$\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Recall a classical result:

$$
\forall \text { monotonic } f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f} \text { is DST }
$$

- How does M_{f} look like? On input bid-profile v
- Player i wins w.p. $f_{i}(v)$;
- Player i (if wins), pays $v_{i}-\frac{1}{f_{i}(v)} \int_{z=0}^{v_{i}} f_{i}\left(z \sqcup v_{-i}\right) d z$
- Our result:
* = distinguishably monotonic
\Rightarrow only need to focus on finding good allocation function f

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$ And it is optimal among probabilistic mechanisms

Upper Bounds on ε

Upper Bound Tool

Undominated Intersection Lemma:
$\left|K_{i} \cap K_{i}^{\prime}\right| \geq 2 \Longrightarrow \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right) \neq \emptyset$

- Thm: in undominated strategies, no deterministic mechanism guarantees more than $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$.

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, someone is unlucky, WLOG player 1

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$, someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing ($\sigma_{1}, \sigma_{2}, \sigma_{3}$), someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

6. Conclusion

Conclusion

mechanism design $=$

Conclusion

mechanism design $=$

Conclusion

Conclusion

Goal: want to learn about others, who may not know themselves very well.

Conclusion

Goal: want to learn about others,
who may not know themselves very well.
The Goal is desirable and doable!

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Impl. in Dominant Strategies

- There is a profile of strategies of players that "cannot be beaten" for which the mechanism M ensures good social welfare.

Classical Model

- $\sigma_{i} \underset{T V_{i}}{\geq w} \sigma_{i}^{\prime}$ if

$$
\forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \geq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)
$$

($\operatorname{Dnt}_{i}\left(\mathrm{TV}_{i}\right)=\left\{\sigma_{i}: \forall \sigma_{i}^{\prime}, \quad \sigma_{i} \underset{T V_{i}}{\mathrm{vw}} \sigma_{i}^{\prime}\right\}=$ "unbeatable strategies w.r.t. $T V_{i}$ "

- A mechanism M implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
\forall T V \quad & , \exists \sigma \in \operatorname{Dnt}(T V) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot M S W(T V)
\end{aligned}
$$

Impl. in Dominant Strategies

- There is a profile of strategies of players that "cannot be beaten" for which the mechanism M ensures good social welfare.

Our Model

- $\sigma_{i} \underset{\substack{\mathrm{NW} \\ K_{i}}}{\mathrm{Vw}} \sigma_{i}^{\prime}$ if $\forall T V_{i} \in K_{i}, \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \geq u_{i}\left(T V_{i}, M\left(\sigma_{i}{ }^{\prime} \sqcup \tau_{-i}\right)\right)$

- A mechanism $M \delta$-implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
& \forall K \in[\delta], \forall T V \in K, \exists \sigma \in \operatorname{Dnt}(\stackrel{T}{K} K) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot M S W(T V)
\end{aligned}
$$

Impl. in Dominant Strategies

- Thm: in dominant strategies, every (possibly probabilistic) mechanism cannot guarantee more than $\frac{1}{n} \cdot M S W$
"Revelation Principle" *
- Claim: in dominant strategies, every (possibly probabilistic) direct mechanism cannot guarantee more than $\frac{1}{n} \cdot M S W$
set of strategies is $[\delta] *$

Impl. in Dominant Strategies

- Claim: in dominant strategies, every (possibly probabilistic) direct mechanism cannot guarantee more than $\frac{1}{n} \cdot M S W$
- Proof:

1. Lemma: a dominant strategy direct mechanism M gives the same outcome when a player deviates individually: $\forall K, \forall i, \forall K_{i}^{\prime}$,

$$
M_{i}(K)=M_{i}\left(K_{i}^{\prime} \sqcup K_{-i}\right)
$$

(Proof: play with different worlds)
2. Consider WORLD $_{1}$: all players bid low; there is some unlucky player, say player 5.
3. Consider WORLD_{2} : all players bid low except player 5 .
4. Compute and conclude. QED

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Impl. in Undominated Strategies

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Impl. in Undominated Strategies

"When players use non-stupid strategies, the mechanism M ensures good social welfare"

Classical Model

$$
\ominus \sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime} \text { if }\{
$$

$$
\begin{aligned}
& \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right) \\
& \exists \tau_{-i}, \\
& u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)
\end{aligned}
$$

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Classical Model

$$
\begin{aligned}
& \text { never worse } \\
& \vee \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}{ }^{\prime} \sqcup \tau_{-i}\right)\right) \\
& \text { \& } \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}{ }^{\prime} \sqcup \tau_{-i}\right)\right) \\
& \int \exists \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}{ }^{\prime} \sqcup \tau_{-i}\right)\right) \\
& \text { better at least once }
\end{aligned}
$$

- $\sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime}$ if $\{$

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Classical Model never worse

- $\sigma_{i} \leq \sigma_{i}^{\prime}$ if $\left\{\forall \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)\right.$
$\sigma_{i} \underset{T V_{i}}{ } \sigma_{i}^{\prime}$ if $\quad \exists \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)$ better at least once
- $\operatorname{UDed}_{i}\left(\operatorname{TV}_{i}\right)=\left\{\sigma_{i}: \nexists \sigma_{i}^{\prime}\right.$ s.t. $\left.\sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime}\right\}=$ "non-stupid strategies w.r.t. $T V_{i}$ "

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Classical Model never worse

- $\sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime}$ if $\{$ $\forall \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}{ }^{\prime} \sqcup \tau_{-i}\right)\right)$ $\underset{\text { better at least once }}{\exists \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}{ }^{\prime} \sqcup \tau_{-i}\right)\right)}$
- $\operatorname{UDed}_{i}\left(\operatorname{TV}_{i}\right)=\left\{\sigma_{i}: \nexists \sigma_{i}^{\prime}\right.$ s.t. $\left.\sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime}\right\}=$ "non-stupid strategies w.r.t. $T V_{i}^{\prime \prime}$
- A mechanism M implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
& \forall T V \quad, \forall \sigma \in \operatorname{UDed}(T V) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot M S W(T V)
\end{aligned}
$$

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Our Model

$\stackrel{\text { never worse }}{\forall} \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)$
$\exists \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)$
better at least once

- $\sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime}$ if $\{$
- $\operatorname{UDed}_{i}\left(\mathrm{TV}_{i}\right)=\left\{\sigma_{i}: \nexists \sigma_{i}^{\prime}\right.$ s.t. $\left.\sigma_{i} \underset{T V_{i}}{\leq} \sigma_{i}^{\prime}\right\}=$ "non-stupid strategies w.r.t. $T V_{i}{ }^{\prime \prime}$
- A mechanism M implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
& \forall T V \quad, \forall \sigma \in \operatorname{UDed}(T V) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot M S W(T V)
\end{aligned}
$$

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Our Model neverworse

- $\quad \sigma_{i} \underset{\underset{T}{T K_{i}}}{K_{i}} \sigma_{i}^{\prime}$ if $\left\{\begin{array}{l}\forall T V_{i} \in K_{i}, \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right) \\ \exists T V_{i} \in K_{i}, \exists \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)\end{array}\right.$ better at least once
- $\operatorname{UDed}_{i}\left(\operatorname{TV}_{i}\right)=\left\{\sigma_{i}: \nexists \sigma_{i}^{\prime}\right.$ s.t. $\left.\sigma_{i} \underset{\operatorname{TV}_{i}}{\leq} \sigma_{i}^{\prime}\right\}=$ "non-stupid strategies w.r.t. $T V_{i}$ "
- A mechanism M implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
\forall T V \quad & , \forall \sigma \in \operatorname{UDed}(T V) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot M S W(T V)
\end{aligned}
$$

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Our Model

- $\quad \sigma_{i} \underset{\substack{T K_{i} \\ K_{i}}}{\leq} \sigma_{i}^{\prime}$ if $\left\{\begin{array}{l}\forall T V_{i} \in K_{i}, \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right) \\ \exists T V_{i} \in K_{i}, \exists \tau_{-i}, \\ u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)\end{array}\right.$

- A mechanism M implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
\forall T V \quad & , \forall \sigma \in \operatorname{UDed}(T V) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot M S W(T V)
\end{aligned}
$$

Impl. in Undominated Strategies

- "When players use non-stupid strategies, the mechanism M ensures good social welfare"

Our Model

- $\quad \sigma_{i} \underset{\underset{T}{T K_{i}}}{K_{i}} \sigma_{i}^{\prime}$ if $\left\{\begin{array}{l}\forall T V_{i} \in K_{i}, \forall \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right) \leq u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right) \\ \exists T V_{i} \in K_{i}, \exists \tau_{-i}, u_{i}\left(T V_{i}, M\left(\sigma_{i} \sqcup \tau_{-i}\right)\right)<u_{i}\left(T V_{i}, M\left(\sigma_{i}^{\prime} \sqcup \tau_{-i}\right)\right)\end{array}\right.$

- A mechanism $M \delta$-implements $\varepsilon \cdot M S W$ if

$$
\begin{aligned}
& \forall K \in[\delta], \forall T V \in K, \forall \sigma \in \operatorname{UDed}(\underset{K}{N}) \\
& \underset{M, \sigma}{\mathbb{E}}[S W(T V, M(\sigma))] \geq \varepsilon \cdot \operatorname{MSW}(T V)
\end{aligned}
$$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
- And it is optimal among probabilistic mechanisms

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing ($\sigma_{1}, \sigma_{2}, \sigma_{3}$), someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

Upper Bounds on ε

Proof:

1. Pick any x and set $K_{1}=K_{2}=K_{3}=[(1-\delta) x,(1+\delta) x]$
2. Set $K_{1}^{\prime}=K_{2}^{\prime}=K_{3}^{\prime}$ to "just touch K_{i} from below"
3. Apply UIL to obtain $\sigma_{i} \in \operatorname{UDed}_{i}\left(K_{i}\right) \cap \operatorname{UDed}_{i}\left(K_{i}^{\prime}\right)$ for each i
4. When playing ($\sigma_{1}, \sigma_{2}, \sigma_{3}$), someone is unlucky, WLOG player 1
5. Choose the "world" of $\left(K_{1}, K_{2}^{\prime}, K_{3}^{\prime}\right) \ldots$ This is the hard instance!

$$
\ldots \Rightarrow \varepsilon \leq \frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}}
$$

Probabilistic: QED
σ_{1}
σ_{2}
σ_{3}

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:
1.
2.

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:
1.
2. Done!

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Why are we done?

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done! Why are we done? Hardest instance is still:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Why are we done?
Hardest instance is still:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Why are we done?
Hardest instance is still:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Why are we done?
Hardest instance is still:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Why are we done?
Hardest instance is still:

Second-price: QED

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

For any τ_{-i}, have three cases:
i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$ i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ loses in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$ i wins in $\sigma_{i} \sqcup \tau_{-i} ; \quad i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$
i wins in $\sigma_{i} \uplus \tau_{-i}$; ioses in $\sigma_{i}^{\prime} \uplus \tau_{-i}$

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

For any τ_{-i}, have three cases:
i loses in $\sigma_{i} \sqcup \tau_{-i} ; \quad i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$ i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ loses in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$ i wins in $\sigma_{i} \sqcup \tau_{-i} ; \quad i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$
i wins in $\sigma_{l} \sqcup \tau_{-i}$ i, iloses in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$ Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

$$
K_{i} \quad \operatorname{UDed}_{i}\left(K_{i}\right)
$$

i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$
Utility of player i :

$$
\left.\begin{array}{l}
\sigma_{i}^{\prime} \sqcup \tau_{-i}<0 \\
\sigma_{i} \sqcup \tau_{-i}=0
\end{array}\right\} \begin{aligned}
& \text { No matter what the } \\
& \text { devil chooses }
\end{aligned}
$$

Lower Bounds on ε

Thm: Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$

Proof:

1. $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$ for every player i
2. Done!

Proof:

i loses in $\sigma_{i} \sqcup \tau_{-i} ; i$ wins in $\sigma_{i}^{\prime} \sqcup \tau_{-i}$ Utility of player i :

$$
\left.\begin{array}{c}
\sigma_{i}^{\prime} \sqcup \tau_{-i}<0 \\
\sigma_{i} \sqcup \tau_{-i}=0
\end{array}\right\} \begin{aligned}
& \text { No matter what the } \\
& \text { devil chooses }
\end{aligned}
$$

Our Results

Implementation in ...

... Dominant Strategies

- Thm 1:

Cannot get more than $\frac{1}{n} \cdot M S W$

Upper Bound Tool:
Undominated Intersection Lemma

Lower Bound Tool:
Distinguishable Monotonicity Lemma
... Undominated Strategies

- Thm 2:
- Second-price mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot M S W$
- And it is optimal among deterministic mechanisms
- Thm 3:
- Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
And it is optimal among probabilistic mechanisms

Lower Bounds on ε

Thm: Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot$ MSW Proof:

Lower Bounds on ε

Thm: Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$ Proof:
... where to start?

Lower Bounds on ε

Thm: Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
Proof:
... where to start?

Lower Bound Tool
Distinguishable Monotonicity Lemma:
\forall monotonic $^{*} f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

Lower Bounds on ε

Thm: Our mechanism guarantees $\frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} \cdot M S W$
Proof:
... where to start?

Lower Bound Tool
Distinguishable Monotonicity Lemma:
\forall monotonic $^{*} f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies
$\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

Task reduces to designing a good f

Lower Bounds on ε

Lower Bound Tool
Distinguishable Monotonicity Lemma:
\forall monotonic $^{*} f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Designing f :
- When bids are close to each other: give good at random.
- When there is a "clear winner": act like second-price.
- If neither: interpolate in a smart way.

Lower Bounds on ε

Lower Bound Tool

Distinguishable Monotonicity Lemma:
\forall monotonic $^{*} f: \mathbb{R}^{n} \rightarrow[0,1]^{n}, \quad M_{f}$ satisfies $\operatorname{UDed}_{i}\left(K_{i}\right) \subset\left[\min K_{i}, \max K_{i}\right]$

- Designing f :
- When bids are close to each other: give good at random.
- When there is a "clear winner": act like second-price.
- If neither: interpolate in a smart way.

This is delicate. In every "intermediate case", need to:

1) ensure the target social welfare, and
2) ensure distinguishable monotonicity.

Our Optimal Mechanism

Our Optimal Mechanism

"10000m" view:

1. On input bids $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, WLOG $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$.

Our Optimal Mechanism

"10000m" view:

1. On input bids $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, WLOG $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$.
2. Find "magic" threshold n^{*}

Our Optimal Mechanism

"10000m" view:

1. On input bids $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, WLOG $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$.
2. Find "magic" threshold n^{*}
3. Assign good to only "candidate winning" players $1,2, \ldots, n^{*}$ where player $i \in\left\{1,2, \ldots, n^{*}\right\}$ wins with "magic" probability:

Our Optimal Mechanism

"10000m" view:

2. Find "magic" threshold n^{*}
3. Assign good to only "candidate winning" players $1,2, \ldots, n^{*}$ where player $i \in\left\{1,2, \ldots, n^{*}\right\}$ wins with "magic" probability:

Our Optimal Mechanism

" 100 m " view:

1. On input bids $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, WLOG $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$.
2. Find "magic" threshold n^{*} s.t. $\left\{\begin{array}{l}v_{i}>\frac{\sum_{j=1}^{n^{*}} v_{j}}{n^{*}+D(\delta)} \text { for all } 1 \leq i \leq n^{*} \\ v_{i} \leq \frac{\sum_{j=1}^{n^{*}} v_{j}}{n^{*}+D(\delta)} \text { for all } n^{*}<i \leq n\end{array}\right.$
3. Assign good to only "candidate winning" players $1,2, \ldots, n^{*}$ where player $i \in\left\{1,2, \ldots, n^{*}\right\}$ wins with "magic" probability:

$$
f_{i}(v)=\frac{1}{n} \cdot \frac{n+D(\delta)}{n^{*}+D(\delta)} \cdot \frac{v_{i}\left(n^{*}+D(\delta)\right)-\sum_{j=1}^{n^{*}} v_{j}}{v_{i} D(\delta)}
$$

Our Optimal Mechanism

"100m" view:

1. On input bids $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, WLOG $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$.
2. Find "magic" threshold n^{*} s.t. $\left\{\begin{array}{l}v_{i}>\frac{\sum_{j=1}^{n^{*}} v_{j}}{n^{*}+D(\delta)} \text { for all } 1 \leq i \leq n^{*} \\ v_{i} \leq \frac{\sum_{j=1}^{n^{*}} v_{j}}{n^{*}+D(\delta)} \text { for all } n^{*}<i \leq n\end{array}\right.$
3. Assign good to only "candidate winning" players $1,2, \ldots, n^{*}$ where player $i \in\left\{1,2, \ldots, n^{*}\right\}$ wins with "magic" probability:

$$
f_{i}(v)=\frac{1}{n} \cdot \frac{n+D(\delta)}{n^{*}+D(\delta)} \cdot \frac{v_{i}\left(n^{*}+D(\delta)\right)-\sum_{j=1}^{n^{*}} v_{j}}{v_{i} D(\delta)}
$$

Easy to evaluate, just like the second-price mechanism!

Our Optimal Mechanism

"1m" view:

Our Optimal Mechanism

"1m" view:

Approximate Valuations

