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Abstract
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δ ∈ (0, 1). On the negative side, we prove that in our setting no dominant-strategy mechanism
can significantly guarantee better social welfare than that achievable by assigning the good to a
random player. On the positive side, we provide tight upper and lower bounds for the fraction
of the maximum social welfare achievable in undominated strategies, whether deterministically
or probabilistically.
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1 Brief Introduction

A general direction and a specific focus. Mechanism design aims at producing a desired
outcome by leveraging each player’s rationality and his knowledge of his own (pay-off) type. But:

What happens when each player knows his own type only approximately?

We explore this general direction focusing on a specific goal (trivially achieved when the players
know their own types exactly):

Guaranteeing high social welfare in auctions of a single good.

We do so from a finite perspective: namely, we consider players with only finitely many possible
types and mechanisms specifying for each player only finitely many strategies.

Our model of self uncertainty. In a single-good auction, a player type is a natural number,
referred to as a valuation. The possibility that a player in such an auction may not precisely know
his own valuation strikes us to be quite realistic. No one would be too surprised if, tasked to figure
out a firm’s true valuation for the good, different employees reported different values, or some
of them reported ranges of values rather than single values. This said, for decision theory —let
alone mechanism design!— to be meaningful at all, the players must know something about their
own types. The classical work of [Kni21] (see also [Bew02]) envisages that each player knows that
his own type is distributed according to one of several possible distributions. Other works —e.g.,
[Mye81, San00, FT11]— envisage a more structured kind of “self knowledge”: namely, each player
knows the distribution from which his own type has been drawn.

Our model of the players’ “self uncertainty” is purely set-theoretic. In essence, each player only
knows that his own valuation is one of several candidates. In this model we investigate how good
mechanisms one can design when it is the case that the candidates of each player are relatively
clustered: that is, when “each player knows his own valuation within the same fixed percentage”.

Roadmap. In the main body of this extended abstract we motivate our model and its associated
solution concepts, state our three main results, highlight two techniques that we believe to be of
independent interest, and finally compare our model and work with prior ones. All formalizations
and proofs can be found in the appendix.

2 The Approximate-Valuation Model

A δ-approximate context, where δ is a constant in [0, 1), is formally defined in Appendix A. Infor-
mally, in such a context all possible valuations are integers between 0 and a valuation bound B.
Each player i does not know his own true valuation, θi, but a set Ki ⊆ {0, . . . , B} such that

(i) θi ∈ Ki and (ii) Ki ⊆ δ[ci],

where ci is the “center” of Ki and, for all x ∈ R, δ[x] consists of all possible valuations within

x± δx, that is, δ[x]
def
=
[
(1− δ)x, (1 + δ)x

]
∩ {0, 1, . . . , B}.

We refer to δ as an approximation accuracy, and to each Ki as the approximate-valuation set
of player i (or δ-approximate-valuation set if we wish to be more precise). We denote by C δ

n,B the
class of all δ-approximate contexts with n players and valuation bound B.

Each approximate-valuation set Ki should be interpreted as the set of all and only candidates
for θi in i’s mind. For instance, when δ = 0 he knows his own valuation exactly, and when δ = 0.1
“within a 10% accuracy”. No matter how accurately each player knows his own true valuation,
every context is δ-approximate for a suitably large δ: after all, all contexts are 1-approximate!
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Q&A.

• Why δ? In our purely set-theoretic framework, the approximation accuracy δ can be inter-
preted as quantifying the “quality of the players’ knowledge about themselves”. We thus find
it natural to measure the performance of a mechanism as a function of δ. Without identifying
any structure in the players’ possible multiple valuations, one may at most design elementary
mechanisms, rather than “good” single-good auctions. In sum, the accuracy parameter δ is
our Trojan horse for bringing meaningful mechanism design into our model.

• Why θi ∈ Ki? A player’s approximate-valuation set contains the player’s true valuation
because we consider each player to be “the ultimate authority about himself”.

• Why is Ki not just an interval of integers? An approximate-valuation set Ki may indeed
be just that. But defining it to be a more general subset of {0, . . . , B} may be necessary in
some contexts. For instance, consider a player i who is about to participate to a yard-sale
auction of a large sofa. He may know precisely the amount v he would pay for the sofa,
but also that, if he wins it, he would have to carry it on top of his car, which is illegal and
punishable with a fine f . In a Bayesian setting, he should compute his expected value of the
sofa from the probability of being caught by the police on his way home (presumably based
on the specific time of day, the immediate weather forecast, the immediate traffic forecast, the
likelihood that other crimes might compete for the police’s attention, and so on). But in our
set-theoretic model, his approximate-valuation set Ki blissfully consists of just two separate
values: namely, Ki = {v, v − f}.1

• Multiplicative or additive accuracy? A greater level of generality is achieved by considering
two distinct accuracy parameters: a multiplicative one, δ∗, and an additive one, δ+, leading
to the following modified constraint:

Ki ⊆
[
(1− δ∗)xi − δ+, (1 + δ∗)xi + δ+

]
∩ {0, 1, . . . , B} for some value xi ∈ R.

All of our theorems hold for such more general approximate valuations. For simplicity, how-
ever, we consider only one kind of accuracy parameters, and we find the multiplicative one
more meaningful.

• Multiple possible δ’s? Yes: indeed, δ > δ′ implies that every δ′-approximate context also is a
δ-approximate one, and that C δ

n,B ⊇ C δ′
n,B.

• Do the players know δ? A player i in a δ-approximate context may know nothing about a
“global δ”. Of course, knowing Ki, he can certainly compute his smallest “local” δi: namely,
maxKi−minKi
maxKi+minKi

. But he may not have enough information about his opponents to realize that
he is in a δ-approximate context for δ < 1.

• Does the designer know δ? When disproving the existence of mechanisms with a given
efficiency guarantee for C δ

n,B, we gladly assume that the mechanism designer does know δ
precisely, since this makes our impossibility results stronger. When proving the existence of
such mechanisms, we shall specify whether or not the designer knows a “sufficient” δ.

• Can real δ’s be really large? Absolutely. Valuations may indeed be “very approximate”.
Consider a firm participating to an auction for the exclusive rights to manufacture solar
panels in the US for a period of 25 years. Even if the demand were precisely known in
advance, and the only uncertainty were to come from the firm’s ability to lower its costs of
production via some breakthrough research, an approximation accuracy of the firm’s own
valuation for the license could easily exceed 0.5.

1Note that such fine it is not paid to the seller, and cannot be modeled “within the game”. It is an element
extraneous to the auction, but clearly affecting the valuation of our particular player.
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3 Appropriate Solutions Concepts and Performance Measures

Solution concepts. In a non-Bayesian setting of incomplete information, two notions of im-
plementations are natural to explore: implementation in dominant strategies and in undominated
strategies [Jac92]. However, the classical definitions of dominance need to be extended in order
to apply to our approximate-valuation model. (Essentially, we adapt the generalized notions of
dominance for Knightian uncertainty [Kni21, Bew02] to our purely set-theoretic setting.)

Informally, a strategy si of a player i very-weakly dominates another strategy ti of i, relative to
a mechanism M and an approximate-valuation set Ki of i, if, for all candidate valuations in Ki and
all possible strategy subprofiles of his opponents, si gives i a utility greater than or equal to that
given him by ti. If it is further the case that si gives i strictly greater utility than ti for at least
some valuations in Ki and strategy subprofiles of i’s opponents, then si weakly dominates ti. A
strategy of i is undominated if it is not weakly dominated. (The set of such undominated strategies
is denoted by UDedMi (Ki), or simply by UDedi(Ki) when M is clear from context.)

Performance measures. As mentioned at the beginning, our plan is to provide “worst-case
guarantees” about social welfare for single-good auctions in the approximate-valuation setting.
This plan requires some explaining: indeed, when all knowledge resides with the players and they
are uncertain about their own valuations, what should “maximum social welfare” and “actual social
welfare” mean? Conceptually, we envisage the following process:

1. A context in C δ
n,B materializes: that is, there is one good for sale and n players show up, each

player i with a δ-approximate-valuation set set Ki.

2. A mechanism designer, knowing only n and B (and in some applications also a valid accuracy
parameter δ), chooses a solution concept and constructs a (possibly probabilistic) mechanism
M for auctioning the good.

3. The “devil”, knowing everything specified so far, secretly selects a true valuation profile θ
such that θi ∈ Ki for every player i.

4. Each player i, based on his approximate-valuation set Ki, selects (possibly probabilistically)
and reports a strategy si in the set of strategies Si provided to him by M . (Perhaps, player
i may learn θi after the auction is over. Perhaps, he may never learn it.)

5. The mechanism then evaluates its (possibly probabilistic) outcome function F on the reported
strategy profile s so as to produce an outcome ω = (j, P ): that is, the outcome F (s) specifies
the player j winning the good, and the profile of prices P = (P1, . . . , Pn) that the players pay.

Given this process, whether or not the players eventually become aware of their own true valuations,
the maximum social welfare relative to the secret devil-chosen θ, MSW(θ), is taken to be maxi θi,
and the actual social welfare relative to θ for outcome w = (j, P ), SW(θ, ω) is taken to be θj . We
are interested in studying, as a function of δ and the chosen solution concept, the expected value
(over all possible sources of randomness) of the ratio

SW(θ, ω)

MSW(θ)
.

4 Results

How much social welfare can we guarantee in approximate-valuation auctions?
In a classical setting the answer is trivial: 100% in (very-weakly-)dominant strategies, via the

second-price mechanism. The situation is quite different with approximate valuations.
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4.1 The Inadequacy of Dominant-Strategy Mechanisms

A bit superficially, one might argue that very-weakly-dominant-strategy mechanisms cannot be
meaningful in the approximate-valuation world as follows: If a player has multiple possible candi-
dates for his true valuation, how can he know which one is “the best” for him to bid no matter what
his opponents do?

This “reasoning” presupposes that, as in the exact-valuation world, an auction mechanism can
safely restrict a player’s strategies to (reporting) single valuations. In our setting, however, it is not
only reasonable but even natural for a mechanism to allow a player to report a set of valuations
(e.g., his own Ki). Indeed, it is easy to realize that the revelation principle [Mye81] continues to
guarantee that every very-weakly-dominant-strategy mechanism for C δ

n,B has an equivalent very-
weakly-dominant-strategy-truthful mechanism. In our approximate world, a mechanism is of the
latter kind if, for each player i: (1) Si, the strategies of i, consists of reporting an arbitrary δ-
approximate set Vi of valuations, and (2) reporting his true approximate-valuation set Ki is a
very-weakly-dominant strategy.

With such richer strategy sets, in principle there might be a dominant-strategy mechanism
guaranteeing maximum social welfare. More realistically, in light of the approximate accuracy of the
players’ self knowledge, one should expect some degradation of performance to be unavoidable. For
instance, one might conjecture that, in a δ-approximate context, a dominant-strategy mechanism
might be able to guarantee some δ-dependent fraction —such as (1− δ), (1− 3δ), or (1− δ)2— of
the maximum social welfare. We prove, however, that also this is too optimistic.

Theorem 1. For all n, δ ∈ (0, 1), B > 3−δ
2δ , and (possibly probabilistic) very-weakly-dominant-

strategy-truthful mechanism M = (S, F ), there exists a δ-approximate-valuation profile K and a
true-valuation profile θ ∈ K such that

E
[
SW

(
θ, F (K)

)]
≤

(
1

n
+
b3−δ2δ c+ 1

B

)
MSW(θ) .

(The proof of Theorem 1 can be found in Appendix C.)
As a relative measure of the quality of the players’ self knowledge, δ should be independent of

the magnitude of the players’ valuations. But to ensure an upper bound on the players’ valuations,
B should be very large. Accordingly, the above result essentially implies that any very-weakly-
dominant-strategy mechanism can only guarantee a fraction ≈ 1

n of the maximum social welfare.
However, such a fraction can be trivially achieved by the “stupid” very-weakly-dominant-strategy
mechanism that, dispensing with all bids, assigns the good to a random player! Thus, Theorem 1
essentially says that no dominant-strategy mechanism can be smart: “the optimal one can only be
as good as good as the stupid one”. In other words,

unless we are in some form of Bayesian model,
dominant strategies are intrinsically linked to the exact knowledge of our own valuations.

A conceptual contribution. The superficial reasoning at the beginning of this section may be
wrong, but not the gut feeling that dominant strategies must be “wrong” for the approximate-
valuation setting! Intuition, however, must be formalized. This is what Theorem 1 does. Al-
though not very hard to prove, this theorem is conceptually important. By formally ruling out
dominant-strategy mechanisms from meaningful consideration, it opens the door to alternative so-
lution concepts: in particular, to implementation in undominated strategies. We actually believe
that our approximate-valuation setting will provide a new and vital role for this classical, robust,
and non-Bayesian solution concept.
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4.2 The Power of Deterministic Undominated-Strategy Mechanisms

Our next theorem states that the deterministic second-price mechanism: (1) essentially guarantees

a fraction
(
1−δ
1+δ

)2
of the maximum social welfare in undominated strategies, and (2) is essentially

optimal among all deterministic undominated-strategy mechanisms. More formally, denoting by
UDed(K) the Cartesian product UDed1(K1)× · · · × UDedn(Kn),

Theorem 2. The following two statements hold:

a. Let M2P = (S2P, F2P) be the second-price mechanism with a deterministic tie-breaking rule.
Then, for all n, δ ∈ [0, 1), B, δ-approximate-valuation profiles K, true-valuation profiles
θ ∈ K, and strategy profiles v ∈ UDed(K):

SW
(
θ, F2P(v)

)
≥
(

1− δ
1 + δ

)2

MSW(θ)− 2
1− δ
1 + δ

.2

b. Let M = (S, F ) be a deterministic mechanism. Then, for all n, δ ∈ (0, 1) and B ≥ 1+δ
δ ,

there exist a δ-approximate-valuation profile K, a true-valuation profile θ ∈ K, and a strategy
profile s ∈ UDed(K) such that:

SW
(
θ, F (s)

)
≤

((
1− δ
1 + δ

)2

+
3

B

)
MSW(θ) .

(Theorem 2.a and Theorem 2.b are respectively proven in Appendix H and Appendix E.3)

Avoiding confusion. In the exact-valuation world, the second-price mechanism achieves perfect
efficiency both in dominant strategies and in undominated strategies. But in the approximate-
valuation world, it is no longer a dominant-strategy one.

Easier and harder. Theorem 2.a is not hard to prove. At a very high level,

“It is obvious that each player i should only consider bidding a value vi inside his own
approximate-valuation set Ki. It is further obvious that the worst possible gap between
the maximum and the actual social welfare is achieved in the following case. Let w be the
winner in the second-price mechanism, and let h, h 6= w, be the player with the largest
candidate valuation. Player w bids vw = maxKw, and player h bids vh = minKh (and
vw only slightly exceeds vh). In this case it is obvious that the second-price mechanism

guarantees at most a fraction ≈
(
1−δ
1+δ

)2
of the maximum social welfare. ”

Of course, things are a bit more complex. In particular, the fact that a player i should only
consider bids in Ki requires a proof (and is actually “technically” wrong as stated).

Theorem 2.b is harder to prove, as we should expect for all impossibility results. Working in
undominated strategies, the revelation principle no longer applies. Thus, rather than analyzing a
single mechanism (the “direct truthful” one), in principle we should consider all possible mecha-
nisms, and establish that each one of them does no better than the second-price one. In particular,
while the second-price mechanism has a clear and simple strategy space (namely, an integer in
{0, 1, . . . , B}), we should consider mechanisms giving the players absolutely arbitrary strategies:
even reporting arbitrary subsets of {0, 1, . . . , B} would be a strong restriction! Establishing Theo-
rem 2.b thus requires new techniques, informally discussed in Section 5, and formally provided in
Appendix D.

2Breaking ties at random, the performance guarantee is only marginally better: namely, exactly ( 1−δ
1+δ

)2MSW(θ).
3To denote a strategy profile, we use “v” in the statement of Theorem 2.a to emphasize that each player in the

M2P indeed bids a valuation; and “s” in Theorem 2.b to emphasize that a player’s strategies can be totally arbitrary.
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4.3 The Greater Power of Probabilistic Undominated-Strategy Mechanisms

Our final Theorem shows that, in undominated strategies, there exists an essentially optimal prob-
abilistic mechanism.

Theorem 3. The following two statements hold:

a. ∀n, ∀δ ∈ (0, 1), and ∀B, there exists a mechanism M
(δ)
opt such that for every δ-approximate-

valuation profile K, every true-valuation profile θ ∈ K, and every strategy profile s ∈ UDed(K):

E
[
SW

(
θ, F2P(s)

)]
≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)
MSW(θ) .

b. Let M = (S, F ) be a (deterministic or probabilistic) mechanism. Then for all n, δ ∈ (0, 1),
and B ≥ 1+δ

δ , there exist a δ-approximate-valuation profile K, a strategy profile s ∈ UDed(K),
and a true-valuation profile θ ∈ K such that

E
[
SW

(
θ, F (s)

)]
≤

(
(1− δ)2 + 4δ

n

(1 + δ)2
+

3

B

)
MSW(θ) .

(The proofs of Theorem 3.a and Theorem 3.b can be found in Appendix I and Appendix F

respectively. Note that the mechanism M
(δ)
opt of Theorem 3.a is constructed given knowledge of δ.4)

Theoretical significance. Theorem 3 highlights a novelty of the approximate-valuation world:
namely, probabilism enhances the power of implementation in undominated strategies even for guar-
anteeing social welfare. By contrast, probabilism offers no such advantage in the exact-valuation
world, since the deterministic second-price mechanism already guarantees maximum social welfare.
We conjecture that, in the approximate-valuation world, probabilistic mechanisms will enjoy a
provably better performance in other applications as well.

Technical difficulty. The impossibility result in Theorem 3.b is again non-trivial, but Theo-
rem 3.a is even much harder to prove. Indeed, it is the technically hardest one in this paper.

Practicality. Despite the technical difficulty of its proof, we would like to emphasize that mech-

anism M
(δ)
opt actually requires almost no computation from the players, and a very small amount of

computation from the mechanism. In essence, it is very practically played.
In addition, its performance is practically preferable to that of the second-price mechanism.

For instance, when δ = 0.5, M
(δ)
opt guarantees a social welfare that is at least five times higher that

of the second-price mechanism when there are 2 players, and at least three times higher when

there are 4 players. Even when δ = 0.25, the guaranteed performance of M
(δ)
opt is almost two times

higher than that of the second-price when there are 2 players. (For a full comparison chart, see
Appendix J.)

5 Two Techniques of Independent Interest

New ventures require new tools. We thus wish to highlight two techniques that we believe will
prove useful to the design and analysis of mechanisms in the approximate-valuation setting.

4With extra pains, however, one can actually get a reasonable performance if the mechanism only knows a good
upper bound on δ.
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The Undominated Intersection Lemma. To prove that a given social choice function cannot
be implemented in undominated strategies in the approximate-valuation model, as it is needed
for Theorem 2.b and Theorem 3.b, we wish to establish some basic structural properties about
undominated strategies.

For example, as an intuitive warm-up, if the strategies Si available to each player i simply
consisted of reporting single valuations, that is, if Si = {0, 1, . . . , B}, would it be the case that

UDedi(Ki) = Ki ? (5.1)

If so, this would imply the following:

Ki ∩ K̃i 6= ∅ ⇒ UDedi(Ki) ∩ UDedi(K̃i) 6= ∅ . (5.2)

However, relation (5.1) is in general false. Even if the strategies given to each player are
valuations between 0 and B, a mechanism does not need to interpret a bid vi reported by i as i’s
true valuation θi. For instance, the mechanism could first replace each vi by π(vi) where π is some
fixed permutation over {0, 1, . . . , B} and then run the second-price mechanism as if each player i
had bid π(vi). In this case, after UDed(Ki) has been correctly computed, it will look very different
from Ki.

Relation (5.2) might hold even if relation (5.1) does not. But it is unclear that it does: the set
of strategies Si’s provided by a mechanism can be absolutely arbitrary, rather than {0, 1, . . . , B}.
Therefore, as soon as Ki and K̃i are even slightly different, their corresponding UDedi(Ki) and
UDedi(K̃i) may in principle be totally unrelated.

We prove however that a sufficiently simple variant of relation (5.2) holds for all mechanisms,
not just the ones with Si = {0, 1, . . . , B}. Informally,

For any mechanism, no matter whether it is probabilistic or not, if Ki and K̃i have at least two
values in common, then there exist two (possibly mixed) “almost payoff-equivalent” strategies
σi and σ̃i respectively having UDedi(Ki) and UDedi(K̃i) as their support.5

This simple property will be powerful enough to derive all of our impossibility results for im-
plementation in undominated strategies.

The Distinguishable Monotonicity Lemma. To prove that a given social choice function can
be implemented in undominated strategies, as it is needed for Theorem 2.a and Theorem 3.a, we
are happy to work with a suitable class of restricted mechanisms, using only very special strategies
and allocation functions. But what should “suitable” mean?

On one hand, these restrictions should suffice for proving Theorem 2.a and Theorem 3.a. On
the other hand, they should ensure that the undominated strategies corresponding to a given
approximate-valuation set can be characterized in a way that is both conceptually simple and easy
to work with.

Specifically, we consider mechanisms whose strategies consist of possible valuations, namely
the set {0, . . . , B}, and whose allocation functions are restrictions (to {0, 1, . . . , B}N ) of integrable
functions (over [0, B]N ) satisfying a suitable monotonicity property. A simple lemma, the Distin-
guishable Monotonicity Lema, will then guarantee that

The set of undominated strategies of a player i with approximate-valuation set Ki consist of
all valuations between the minimum integer and the maximum integer in Ki.

5Actually relation (5.2) holds when the total number of coins usable by the players is bounded.
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We believe that this simple property will be useful beyond our immediate need to prove Theo-
rem 2.a and Theorem 3.a. Note that:

• Our setting is still discrete: continuous domains are only tools for proving the lemma.

• The Distinguishable Monotonicity Lemma, when specialized to the case where players know
their valuations exactly, is a strengthening of a classical lemma that characterizes those mech-
anisms that are (very-weakly-)dominant-strategy-truthful in single-good auctions.

• The Distinguishable Monotonicity Lemma actually applies to all single-parameter domains,
not just single-good auctions (the same way that the classical lemma does).

6 Our Model vs. Bayesian Ones in Single-Good Auctions

Observe that, in single-good auctions, if a player i knows that his true value θi is drawn from a
distribution Di, then, no matter what the auction mechanism M might be, he should essentially
act as if his true valuation were exactly the expectation of Di.

6 This implies that, for such auctions,
our model subsumes or is equivalent to other Bayesian models.

Individual-Bayesian model as a special case. Assume that player i knows a distribution Di

from which is θi is drawn. By the above observation, in single-good auctions, this is equivalent to
having an exact valuation, and of course the exact-valuation model is a special case of our model.
Even if player i only knew the support Di, in our model he could set this support to be the set Ki.

Equivalence to the Knightian model. Recall that in the Knightian model [Kni21, Bew02],
a player i knows that his own true valuation is drawn from some distribution Di belonging to a
set of distributions Di, without being sure of which distribution in Di is the right one. Thus, in
single-good auctions, this model is equivalent to player i having the approximate-valuation set Ki,
where x ∈ Ki if and only if x is the expectation of some Di ∈ Di. Automatically, therefore, any
Knightian context is δ-approximate for some δ. Moreover, specific δ < 1 can be explicitly computed
from specific Di’s.

As an example, assume that each player i knows, for each possible valuation v, an interval
[Aiv, B

i
v] ⊆ [0, 1] where his probability of θi = v lies in, i.e., Pr[θi = v] ∈ [Aiv, B

i
v]. If there exists

δ such that for each player i and each valuation v, [Aiv, B
i
v] ⊆ δ[xiv] for some xiv, then, although

no player might know δ, after converting each Di to Ki as described above, the context will be
δ-approximate.

Equivalence to more general Bayesian models. For all contexts whose type spaces are “con-
vex”, and thus for single-good auction contexts, all “reasonable” models of uncertainty (including
uncertainty about uncertainty, and so on) actually collapse to our proposed set-theoretic model.

7 Related Work

In settings of incomplete information, two types of uncertainty have been studied extensively:
(1) the uncertainty of each player i about θ−i, the type subprofile of his opponents, and (2) the
uncertainty of a designer about the players’ types. Notice, however, that neither type of uncertainty
is the one we are interested in. As said, we focus solely on the uncertainty that each player i has
about his own payoff type θi.

6In essence, this follows from the linearity of expectation and the linearity of the utility function.
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Bayesian models of “self uncertainty”. Various works model the players’ self uncertainty via
probability distributions. Let us mention a few examples.

In single-good auctions, Milgrom [Mil89] studies the revenue difference between second-price
and English auctions, when the players do not exactly know their valuations, but only that they
are drawn from a common distribution.

Sandholm [San00] presents an example of an auction (with an unconventionally-defined utility
function) where a player’s valuation is drawn from the uniform distribution over [0, 1], and argues
that reporting the expected valuation (i.e., 0.5) is no longer dominant-strategy.

Porter et al. [PRST08] consider a scheduling problem where tasks are to be assigned to players,
and each player i privately knows that he would fail to perform task j with probability pij . This
failure rate can be understood as a distribution of player’s private type. Their paper studies efficient
dominant-strategy mechanisms in this setting.

Feige and Tennenholtz [FT11] consider the problem of scheduling n players to use the same
machine. Each player i has a task requiring time length li, but he does not know li: he only knows
that li is drawn from a distribution Li. The authors study dominant-strategy mechanisms without
monetary transfer, and prove that even if Li’s support has two elements, then no constant fraction
of the maximum social welfare can be guaranteed. To overcome this difficulty, they introduce
a different measure of social efficiency, which they call “fair share”, and provide mechanisms to
guarantee an Ω(1) fair share.7

Set-theoretic models of “self uncertainty”. As already mentioned, in his work (further
formalized by Bewley [Bew02]) Knight [Kni21] considers a player that has a set of distributions
and knows that his true type is drawn from one of them. The Knightian model immediately implies
that the preferences for a player are no longer completely ordered : some pairs of preferences may
become incomparable. (For single-good auctions, as already argued in Section 6, it is equivalent to
each player i knowing a set of candidates Ki for his true valuation.)

Most of the works in the Knightian model address decision making. Some authors, such as
Aumann [Aum62], Dubra et al. [DMO04], Ok [Ok02] and Nascimento [Nas11] work with incom-
plete orders. Others authors discuss various ways of bypassing the set-theoretic component of the
Knightian model by computing a single number from the set of expected utilities: [Dan10] picks
the average or an arbitrary one, [Sch89] picks the so-called Choquet expectation, and [GS89] picks
the maximum.

General equilibrium models with unordered preferences have been considered by Mas-Colell
[MC74], Gale and Mas-Colell [GMC75], Shafer and Sonnenschein [SS75], and Fon and Otani [FO79].
More recently, Rigotti and Shannon [RS05] characterize the set of equilibria in a financial market
problem.8

Lopomo and the previous two authors [LRS09] also construct explicit mechanisms in a Knightian
model, but for a single player. Specifically they consider the rent-extraction problem under two
notions of implementation: 1) when reporting the truth is at least as good as any other strategy
2) when reporting the truth is not strictly eliminated in favor of another strategy. (Notice that,
not envisaging other players, these are not notions of dominance, since the latter should take into
account all strategy sub-profiles of other players.)

7A “ρ fair share” is a property such that each player i has at least ρ success rate if all other players share the
same distribution as his li.

8 A strategy profile is an equilibrium if no player can deviate and strictly benefit no matter which distribution is
picked from his set. Notice that such an equilibrium is not a notion of dominance.
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Appendix

A Single-Good Auctions in the Approximate-Valuation Model

As for any game, an auction can be thought as consisting of two parts, a context and a mechanism.
(Because they do not affect our solution concepts, the players’ beliefs are not part of our contexts.)

Contexts. For δ ∈ [0, 1), a δ-approximate auction context C consists of the following components.
• N = {1, 2, . . . , n}, the set of players.
• {0, 1, . . . , B}, the set of possible valuations for any player. B is the valuation bound.
• θ, the true-valuation profile, where each θi ∈ {0, 1, . . . , B}.
• Ω = (N ∪ {⊥}) × RN , the set of outcomes. If (a, P ) ∈ Ω is an outcome, then we refer to a

as its allocation and to P as its profile of prices. (If a ∈ N then player a wins the good; if
a = ⊥ then the good remains unallocated.)
• u, the profile of utility functions. Each ui maps any outcome (a, P ) to θi−Pi if a = i, and to
−Pi otherwise.
• K, the δ-approximate-valuation profile, where, for all i, θi ∈ Ki ⊆ δ[xi] for some xi. Here

δ[x]
def
= [(1− δ)xe, (1 + δ)x] ∩ {0, 1, . . . , B}.

Notice that C is fully specified by n,B, δ, θ,K, that is C = (n,B, δ, θ,K).

Knowledge. Unless otherwise specified, in a context C = (n,B, δ, θ,K) each player i only knows
Ki and that θi ∈ Ki, but has no other information. (A mechanism designer only knows n and B,
and possibly also δ when specified.)

Notation.
• C δ

n,B is the set of all δ-approximate auction contexts with n players and valuation bound B.

• the social welfare (function) SW is defined as SW(θ, (a, P ))
def
= θa for every true-valuation

profile θ and outcome (a, P ).
• the maximum social welfare of a true-valuation profile θ, MSW(θ), is defined to be maxi∈N θi.

Mechanisms. While our contexts have K as a new component, our mechanisms are finite and
ordinary. Indeed a mechanism for C δ

n,B is a pair M = (S, F ) where
• S = S1×· · ·×Sn, where each Si, the set of i’s pure strategies under M , is finite and non-empty;

and
• F : S → (N ∪ {⊥})× RN is M ’s (possibly probabilistic) outcome function.

Notation.
• We denote pure strategies by Latin letters, and possibly mixed strategies by Greek ones.
• If M = (S, F ) is a mechanism and s ∈ S, then by FAi (s) and FPi (s) we respectively denote

the probability that the good is assigned to player i and the expected price paid by i under

strategy profile s. For mixed strategy profile σ ∈ ∆(S), we define FAi (σ)
def
= Es∼σ

[
FAi (s)

]
and

FPi (σ)
def
= Es∼σ

[
FPi (s)

]
.

• We refer to FA as the allocation function of M . More generally, an allocation function is a
function f : S → [0, 1]N such that, for all strategy profile s ∈ S,

∑
i∈N fi(s) ≤ 1.

B Dominance in the Approximate-Valuation Model

In extending the three classical notions of dominance to our approximate valuation setting, the
obvious constraint is that when each approximate-valuation set Ki consists of a single element,

10



then all extended notions must collapse to the original ones.

Definition B.1. In a mechanism M = (S, F ) for some class of contexts C δ
n,B, fix a player i ∈ N

with approximate-valuation set Ki. For a (possibly mixed) strategy σi ∈ ∆(Si) and a pure strategy
si ∈ Si, we say that

• σi very-weakly dominates si, in symbols σi
vw
�
i,Ki

si, if

∀ θi ∈ Ki , ∀ t−i ∈ S−i : Eui(θi, F (σi, t−i)) ≥ Eui(θi, F (si, t−i)) .

• σi weakly dominates si, in symbols σi
w
�
i,Ki

si, if

σi
vw
�
i,Ki

si and ∃ θi ∈ Ki , ∃ t−i ∈ S−i : Eui(θi, F (σi, t−i)) > Eui(θi, F (si, t−i)) .

For Ki, the set of (very-weakly-)dominant and undominated strategies are

Dnti(Ki)
def
=

{
si ∈ Si : ∀ ti ∈ Si , si

vw
�
i,Ki

ti

}
and UDedi(Ki)

def
=

{
si ∈ Si : @σi ∈ ∆(Si) s.t. σi

w
�
i,Ki

si

}
.

Finally we set Dnt(K)
def
= Dnt1(K1)×· · ·×Dntn(Kn) and UDed(K)

def
= UDed1(K1)×· · ·×UDedn(Kn).

Remark B.2.

• The above extensions of the classical notions are quite straightforward. Some attention must
be paid only to the extension of weak dominance in order to maintain the original “intent”.
Consider defining “σi weakly dominates si” using the following alternative quantifications
in the additional condition for weak dominance: (1) ∀θi∀t−i, (2) ∃θi∀t−i, and (3) ∀θi∃t−i.
Alternatives 1 and 2 do not yield the classical notion of weak dominance when Ki is singleton.
Alternative 3 fails to capture the “weakest condition” for which, in absence of special beliefs,
a strategy si should be discarded in favor of σi. Indeed, since we already know that σi very-
weakly dominates si, for player i to discard strategy si in favor of σi, it should suffice that si
is strictly worse than σi for a single true-valuation candidate θi ∈ Ki. That is, we should not
insist that si be strictly worse than σi for all θi ∈ Ki.

• Our impossibility results for implementation in dominant strategies are very strong because
they already apply relative to very-weakly-dominant ones. Thus, for simplicity, we use the
notation Dnti instead of, say, “VWDnti” (and have no need to define weakly-dominant or even
strictly-dominant ones).

• Our results about implementation in undominated strategies are (as for the classical setting)
relative to weak dominance. Thus, for simplicity and tradition sake, we use the notation
UDedi instead of, say, “UWDedi”.9

Notice that we obviously have that:

Fact B.3. UDedi(Ki) 6= ∅ for all Ki.

9We choose to analyze only strategies that are not weakly dominated because, when considering instead very-weak
dominance, two “equivalent” strategies may eliminate each other and the set UDed may become empty.
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C Proof of Theorem 1

Theorem 1. For all n, δ ∈ (0, 1), B > 3−δ
2δ , and (possibly probabilistic) very-weakly-dominant-

strategy-truthful mechanisms M = (S, F ), there exist a δ-approximate-valuation profile K and a
true-valuation profile θ ∈ K such that

E
[
SW

(
θ, F (K)

)]
≤

(
1

n
+
b3−δ2δ c+ 1

B

)
MSW(θ) .

Proof. Fix arbitrarily n, δ, and B such that B > 3−δ
2δ . We start by proving a separate claim:

essentially, if a player reports a δ-integer-interval whose center is sufficiently high, then his winning
probability and expected price remain constant.

Claim C.1. For all players i, integers x ∈ (3−δ2δ , B], and δ-approximate-valuation sub-profiles K̃−i,

FAi (δ[x], K̃−i) = FAi (δ[x+ 1], K̃−i) (C.1)

and
FPi (δ[x], K̃−i) = FPi (δ[x+ 1], K̃−i) . (C.2)

Proof of Claim C.1. Because the approximate-valuation set Ki of player i can be δ[x], and because
when this is the case reporting the truth δ[x] very-weakly dominates δ[x+1], the following inequality
must hold: ∀ θi ∈ δ[x],

FAi (δ[x], K̃−i) · θi − FPi (δ[x], K̃−i) ≥ FAi (δ[x+ 1], K̃−i) · θi − FPi (δ[x+ 1], K̃−i) (C.3)

Because Ki of player i can also be δ[x+1], and when this is the case reporting the truth δ[x+1]
very-weakly dominates δ[x], the following inequality also holds: ∀ θ′i ∈ δ[x+ 1],

FAi (δ[x+ 1], K̃−i) · θ′i − FPi (δ[x+ 1], K̃−i) ≥ FAi (δ[x], K̃−i) · θ′i − FPi (δ[x], K̃−i) . (C.4)

Thus, setting θi = x in Equation C.3 and θ′i = x+1 in Equation C.4, and summing up the resulting
inequalities, the FPi price terms and a few other terms cancel out yielding the following inequality:

FAi (δ[x+ 1], K̃−i) ≥ FAi (δ[x], K̃−i) . (C.5)

Also, setting θi = bx(1 + δ)c in Equation C.3 and θ′i = d(x + 1)(1 − δ)e in Equation C.4,10 and
summing up the resulting inequalities we obtain the following one:(

FAi (δ[x], K̃−i)− FAi (δ[x+ 1], K̃−i)
)
·
(
bx(1 + δ)c − d(x+ 1)(1− δ)e

)
≥ 0 . (C.6)

Now notice that bx(1 + δ)c − d(x + 1)(1 − δ)e > 0, because, by hypothesis, x > 3−δ
2δ . Thus from

Equation C.6 we deduce
FAi (δ[x], K̃−i) ≥ FAi (δ[x+ 1], K̃−i) (C.7)

Together, Equation C.5 and Equation C.7 imply the desired Equation C.1. Finally, combining
Equation C.1 with Equation C.3 and Equation C.4 we obtain the desired Equation C.2.

10The hypothesis x > 3−δ
2δ

implies that x > 1
2δ

, which in turn implies that, under the above choices, θi ∈ δ[x] and
θ′i ∈ δ[x+ 1].
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Let us now finish the proof of Theorem 1.

Choose the profile of approximate-valuation sets K̂
def
= (δ[c], δ[c], . . . , δ[c]), where c

def
= b3−δ2δ c+1.

By averaging, because the summation of FAi (K̂) over i ∈ N cannot be greater than 1, there must

exist a player j such that FAj (K̂) ≤ 1/n. Without loss of generality, let such player be player 1.
Then, invoking Claim C.1 multiple times we have

FA1 (δ[B], δ[c], . . . , δ[c]) = FA1 (δ[B − 1], δ[c], . . . , δ[c]) = · · · = FA1 (δ[c], δ[c], . . . , δ[c]) = FA1 (K̂) ≤ 1

n
.

Now suppose that the true approximate-valuation profile of the players is K
def
= (δ[B], δ[c], . . . , δ[c]).

Then, for the choice of true-valuation profile θ = (B, c, . . . , c) ∈ K, the expected social welfare is:

E
[
SW

(
θ, F (K)

)]
≤ 1

n
B +

n− 1

n
c ≤

(
1

n
+
c

B

)
B =

(
1

n
+
c

B

)
·MSW(θ) ,

as desired. �

D The Undominated Intersection Lemma

Lemma D.1 (Undominated Intersection Lemma). Let M = (S, F ) be a mechanism, i a
player, and Ki and K̃i two approximate-valuation sets of i intersecting in at least two integers.
Then, for every ε > 0, there exist mixed strategies σi ∈ ∆(UDedi(Ki)) and σ̃i ∈ ∆(UDedi(K̃i)) such
that

∀ s−i ∈ S−i ,
∣∣FAi (σi, s−i)− FAi (σ̃i, s−i)

∣∣ < ε∣∣FPi (σi, s−i)− FPi (σ̃i, s−i)
∣∣ < ε

Proof. Let xi and yi be two distinct integers in Ki ∩ K̃i, and, without loss of generality, let xi > yi.
Recall that, by Fact B.3, UDedi(Ki) and UDedi(K̃i) are both nonempty.

If there exists a common (pure) strategy si ∈ UDedi(Ki)∩UDedi(K̃i), then setting σi = σ̃i = si
completes the proof. Therefore, let us assume that UDedi(Ki) and UDedi(K̃i) are disjoint, and let
si be a strategy in UDedi(Ki) but not in UDedi(K̃i). The finiteness of the strategy set Si implies

the existence of a strategy σ̃i ∈ ∆(UDedi(K̃i)) such that σ̃i
w
�
i,K̃i

si. We now argue that

∃ τi ∈ ∆(UDedi(Ki)) such that τi
w
�
i,Ki

σ̃i .
11 (D.1)

Letting σ̃i =
∑

j∈X α
(j)s

(j)
i —where X is a subset of Si— and invoking again the disjointness

of the two undominated strategy sets, we deduce that for each j ∈ X there exists a strategy

τ
(j)
i ∈ ∆(UDedi(Ki)) such that τ

(j)
i

w
�
i,Ki

s̃
(j)
i . Thus, τi

def
=
∑

j∈X α
(j)τ

(j)
i satisfies Equation D.1.

For the same reason, we can also find some τ̃i ∈ ∆(UDedi(K̃i)) such that τ̃i
w
�
i,K̃i

τi. Continuing

in this fashion, “jumping” back and forth between ∆(UDedi(Ki)) and ∆(UDedi(K̃i)), we obtain an

11Note that, while we have only defined what it means for a pure strategy to be dominated by a possibly mixed

one, the definition trivially extends to the case of dominated strategies that are mixed, as is the case in “τi
w
�
i,Ki

σ̃i”

in Equation D.1.
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infinite chain of (not necessarily distinct) strategies, {σ(k)i , σ̃
(k)
i }k∈N, where:

σ
(1)
i

w
≺
i,Ki

σ̃
(1)
i

w
≺
i,K̃i

σ
(2)
i

w
≺
i,Ki

σ̃
(2)
i

w
≺
i,K̃i

· · ·

Since weak dominance implies very-weak dominance, we have that for all s−i ∈ S−i and all k ∈ N:

∀θ̃i ∈ K̃i, FAi (σ
(k)
i , s−i)θ̃i − FPi (σ

(k)
i , s−i) ≤ FAi (σ̃

(k)
i , s−i)θ̃i − FPi (σ̃

(k)
i , s−i)

∀θi ∈ Ki, FAi (σ̃
(k)
i , s−i)θi − FPi (σ̃

(k)
i , s−i) ≤ FAi (σ

(k+1)
i , s−i)θi − FPi (σ

(k+1)
i , s−i)

Because xi ∈ Ki ∩ K̃i, setting θi = θ̃i = xi we see that, for all s−i ∈ S−i and all k ∈ N

FAi (σ
(k)
i , s−i)xi − FPi (σ

(k)
i , s−i) ≤

FAi (σ̃
(k)
i , s−i)xi − FPi (σ̃

(k)
i , s−i) ≤

FAi (σ
(k+1)
i , s−i)xi − FPi (σ

(k+1)
i , s−i) .

Now notice that, s−i ∈ S−i, the infinite and non-decreasing sequence

FAi (σ
(1)
i , s−i)xi−FPi (σ

(1)
i , s−i) ≤ FAi (σ̃

(2)
i , s−i)xi−FPi (σ̃

(2)
i , s−i) ≤ FAi (σ

(3)
i , s−i)xi−FPi (σ

(3)
i , s−i) ≤ · · ·

is upperbounded by B. (Indeed, xi ≤ B, FAi ranges between 0 and 1, and each price is non-
negative.) Thus, by the Bolzano-Weierstrass theorem, for every s−i ∈ S−i there must exist some

H
(s−i,xi)
ε ∈ N such that ∀ k > H

(s−i,xi)
ε :

FAi (σ
(k)
i , s−i)xi − FPi (σ

(k)
i , s−i) ≤ FAi (σ̃

(k)
i , s−i)xi − FPi (σ̃

(k)
i , s−i) (D.2)

FAi (σ̃
(k)
i , s−i)xi − FPi (σ̃

(k)
i , s−i) ≤ FAi (σ

(k+1)
i , s−i)xi − FPi (σ

(k+1)
i , s−i) (D.3)

FAi (σ
(k+1)
i , s−i)xi − FPi (σ

(k+1)
i , s−i) ≤ FAi (σ

(k)
i , s−i)xi − FPi (σ

(k)
i , s−i) +

ε

3B
. (D.4)

Similarly, because yi ∈ Ki ∩ K̃i, setting θi = θ̃i = yi, we have that for every s−i ∈ S−i there

must exist some H
(s−i,yi)
ε ∈ N such that ∀ k > H

(s−i,yi)
ε :

FAi (σ
(k)
i , s−i)yi − FPi (σ

(k)
i , s−i) ≤ FAi (σ̃

(k)
i , s−i)yi − FPi (σ̃

(k)
i , s−i) (D.5)

FAi (σ̃
(k)
i , s−i)yi − FPi (σ̃

(k)
i , s−i) ≤ FAi (σ

(k+1)
i , s−i)yi − FPi (σ

(k+1)
i , s−i) (D.6)

FAi (σ
(k+1)
i , s−i)yi − FPi (σ

(k+1)
i , s−i) ≤ FAi (σ

(k)
i , s−i)yi − FPi (σ

(k)
i , s−i) +

ε

3B
. (D.7)

Notice now that, because the set of strategies S−i is finite, Hε = maxs−i∈S−i{H
(s−i,xi)
ε , H

(s−i,yi)
ε }

is a well defined integer. Next, we pick arbitrarily k > Hε, and prove that σ
(k+1)
i and σ̃

(k)
i are the

two strategies that we are looking for.
To this end, pick arbitrarily s−i ∈ S−i and sum up Equation D.2, Equation D.4 and Equa-

tion D.6. The (expected) prices and the FAi (σ
(k)
i , s−i)xi term will cancel out so as to yield

FAi (σ
(k+1)
i , s−i)(xi − yi) ≤ FAi (σ̃

(k)
i , s−i)(xi − yi) +

ε

3B
.

Then, sum up Equation D.3, Equation D.5 and Equation D.7. The (expected) prices and the

FAi (σ
(k)
i , s−i)yi term will cancel out yielding

FAi (σ̃
(k)
i , s−i)(xi − yi) ≤ FAi (σ

(k+1)
i , s−i)(xi − yi) +

ε

3B
.
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Since xi − yi ≥ 1, we conclude that for all s−i ∈ S−i:∣∣FAi (σ̃
(k)
i , s−i)− FAi (σ

(k+1)
i , s−i)

∣∣ ≤ ε

3B
≤ ε . (D.8)

That is, the first inequality of Lemma D.1 has been proved. Let us now consider the price terms.
Fixing arbitrarily s−i ∈ S−i and combining Equation D.3 and Equation D.8, we get:

FAi (σ̃
(k)
i , s−i)xi − FPi (σ̃

(k)
i , s−i) ≤ FAi (σ

(k+1)
i , s−i)xi − FPi (σ

(k+1)
i , s−i)

≤
(
FAi (σ̃

(k)
i , s−i) +

ε

3B

)
xi − FPi (σ

(k+1)
i , s−i)

⇒ −FPi (σ̃
(k)
i , s−i) ≤

ε

3
− FPi (σ

(k+1)
i , s−i) . (D.9)

Summing up Equation D.2 and Equation D.4 and then substituting Equation D.8, we get:

FAi (σ
(k+1)
i , s−i)xi − FPi (σ

(k+1)
i , s−i) ≤ FAi (σ̃

(k)
i , s−i)xi − FPi (σ̃

(k)
i , s−i) +

ε

3B

≤ (FAi (σ
(k+1)
i , s−i) +

ε

3B
)xi − FPi (σ̃

(k)
i , s−i) +

ε

3B

⇒ −FPi (σ
(k+1)
i , s−i) ≤

2ε

3
− FPi (σ̃

(k)
i , s−i) . (D.10)

Finally, combining inequalities Equation D.9 and Equation D.10 we immediately get that for
all s−i ∈ S−i: ∣∣FPi (σ̃

(k)
i , s−i)− FPi (σ

(k+1)
i , s−i)

∣∣ ≤ 2ε

3
≤ ε .

That is, the second desired inequality also holds, completing the proof of Lemma D.1. �

E Proof of Theorem 2.b

Theorem 2.b. Let M = (S, F ) be a deterministic mechanism. Then, for all n, δ ∈ (0, 1) and
B ≥ 1+δ

δ , there exist a δ-approximate-valuation profile K, a true-valuation profile θ ∈ K, and a
strategy profile s ∈ UDed(K) such that:

SW
(
θ, F (s)

)
≤

((
1− δ
1 + δ

)2

+
3

B

)
MSW(θ) . (E.1)

Proof. Choose x
def
= B

1+δ and y
def
= (1−δ)x+2

1+δ , we have x ≥ y due to our choice of B ≥ 1+δ
δ . Recalling

that δ[x]
def
= [(1 − δ)x, (1 + δ)x] ∩ {0, 1, . . . , B}, one can verify that δ[x] and δ[y] both contain

the two integers d(1 − δ)xe and d(1 − δ)xe + 1,12 satisfying the requirement of (the Undominated
Intersection) Lemma D.1.

Choose ε such that 1
n + ε < 1. Then Lemma D.1 guarantees that

∀i ∈ N ∃σi ∈ ∆(UDedi(δ[x])) and σ′i ∈ ∆(UDedi(δ[y])) such that ∀s−i ∈ S−i :∣∣FAi (σi, s−i)− FAi (σ′i, s−i)
∣∣ < ε . (E.2)

12We have d(1− δ)xe+ 1 ≤ x(1− δ) + 2 = 1−δ
1+δ

B + 2 ≤ B = (1 + δ)x as B ≥ 1+δ
δ

, and therefore δ[x] contains both
points. We also have d(1 − δ)xe ≥ d(1 − δ)ye and d(1 − δ)xe + 1 ≤ b(1 − δ)xc + 2 = b(1 + δ)yc, and therefore δ[y]
contains both points.
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Now consider the allocation distribution FA(σ′1, . . . , σ
′
n), where the randomness comes from the

mixed strategy profile since M is a deterministic mechanism. Since the good will be assigned with
a total probability mass of 1, by averaging, there exists a player j such that FAj (σ′1, . . . , σ

′
n) ≤ 1

n :

that is, player j wins the good with probability at most 1
n . Without loss of generality, let j = 1.

In particular, there exist s′−1 ∈ UDed2(δ[y])× · · · × UDedn(δ[y]), such that FA1 (σ′1, s
′
−1) ≤ 1

n . This
together with Equation E.2 implies that FA1 (σ1, s

′
−1) ≤ 1

n + ε < 1. In turn, this implies that there

exists a pure strategy s1 ∈ UDed1(δ[x]) such that, setting s
def
= (s1, s

′
−1), F

A
1 (s) = 0.

Now we construct the desired δ-approximate candidate-valuation profileK and the true-valuation
profile θ as follows:

K
def
=
(
δ[x], δ[y], . . . , δ[y]

)
and θ

def
=
(
(1 + δ)x, d(1− δ)ye, . . . , d(1− δ)ye

)
.

Note that s ∈ UDed(K), θ ∈ K, and MSW(θ) = (1 + δ)x = B. Since FA1 (s) = 0,

SW
(
θ, F (s)

)
= d(1− δ)ye ≤ (1− δ)y + 1

≤ (1− δ)2x
1 + δ

+ 3 =
(1− δ)2

(1 + δ)2
(1 + δ)x+ 3

=

(
(1− δ)2

(1 + δ)2
+

3

B

)
MSW(θ) .

Thus the theorem holds. �

F Proof of Theorem 3.b

Theorem 3.b. Let M = (S, F ) be a (deterministic or probabilistic) mechanism. Then for
all n, δ ∈ (0, 1), and B ≥ 1+δ

δ , there exist a δ-approximate-valuation profile K, a strategy profile
s ∈ UDed(K), and a true-valuation profile θ ∈ K such that

E
[
SW

(
θ, F (s)

)]
≤

(
(1− δ)2 + 4δ

n

(1 + δ)2
+

3

B

)
MSW(θ) . (F.1)

Proof. (The first part of the proof closely tracks that of Theorem 2.a in Appendix E.13)

Choose again x
def
= B

1+δ and y
def
= (1−δ)x+2

1+δ , we have x ≥ y due to our choice of B ≥ 1+δ
δ , and

δ[x] and δ[y] both contain the two integers d(1− δ)xe and d(1− δ)xe+ 1, satisfying the requirement
of (the Undominated Intersection) Lemma D.1.

Since we always have d(1− δ)ye < (1− δ)y + 1, we can choose ε > 0 small enough such that

n− 1

n
d(1− δ)ye+ ε(1 + δ)x− εd(1− δ)ye < n− 1

n
(1− δ)y + 1 .

Then (the Undominated Intersection) Lemma D.1 guarantees that

∀i ∈ N there exist σi ∈ ∆(UDedi(δ[x])) and σ′i ∈ ∆(UDedi(δ[y])) such that ∀s−i ∈ S−i :∣∣FAi (σi, s−i)− FAi (σ′i, s−i)
∣∣ < ε . (F.2)

13Very informally, the only differences are that the allocation distribution FA(σ′1, . . . , σ
′
n) now depends also on the

“coin tosses of the mechanism”, and that one can no longer guarantee the existence of a pure strategy s such that
FA1 (s) = 0.
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Again consider the allocation distribution FA(σ′1, . . . , σ
′
n). By averaging, there exists some

player j such that FAj (σ′1, . . . , σ
′
n) ≤ 1

n . Without loss of generality let j = 1. Thus, by our choice of

ε and Equation F.2, we have that FA1 (σ1, σ
′
−1) ≤ 1

n+ε. This implies that there exists a pure strategy
profile s = (s1, s

′
−1) that is in the support of (σ1, σ

′
−1) —and thus in UDed1(δ[x])× UDed2(δ[y])×

· · · × UDed2(δ[y])— such that FA1 (s1, s
′
−1) ≤ 1

n + ε. Now define

K
def
=
(
δ[x], δ[y], . . . , δ[y]

)
and θ

def
=
(
(1 + δ)x, d(1− δ)ye, . . . , d(1− δ)ye

)
.

Notice that s ∈ UDed(K), θ ∈ K, and MSW(θ) = (1 + δ)x = B. We now show that s, K, and
θ satisfy the desired Equation F.1:

E
[
SW

(
θ, F (s1, s

′
−1)
)]
≤
(

1

n
+ ε

)
· (1 + δ)x+

(
n− 1

n
− ε
)
· d(1− δ)ye

=
1

n
· (1 + δ)x+

n− 1

n
· d(1− δ)ye+ εb(1 + δ)xc − εd(1− δ)ye

<
1

n
· (1 + δ)x+

n− 1

n
· (1− δ)y + 1

≤ 1

n
· (1 + δ)x+

n− 1

n
· (1− δ)2x

1 + δ
+ 3

=

(
1

n
+
n− 1

n
· (1− δ)2

(1 + δ)2
+

3

B

)
(1 + δ)x

=

(
1

n
+
n− 1

n
· (1− δ)2

(1 + δ)2
+

3

B

)
MSW(θ)

=

(
(1− δ)2 + 4δ

n

(1 + δ)2
+

3

B

)
MSW(θ) .

�

G The Distinguishable Monotonicity Lemma

Let us recall a traditional way to define auction mechanisms from suitable allocation functions.

Definition G.1. If f : [0, B]N → [0, 1]N is an integrable14 allocation function, then we denote by
Mf the mechanism (S, F ) where S = {0, 1, . . . , B}N and F is so defined: on input bid profile v ∈ S,
• with probability fi(v) the good is assigned to player i, and

• if player i wins, he pays Pi = vi −
∫ vi
0 fi(z,v−i) dz
fi(vi,v−i)

(and all other players pay Pj = 0 for j 6= i.)

Remark G.2.
• Mf is deterministic if and only if f({0, 1, . . . , B}) ⊆ {0, 1}N .
• For all player i and bid profile v, the expected price FPi (v) = vi · fi(vi, v−i)−

∫ vi
0 fi(z, v−i) dz.

• We stress that Mf continues to have discrete strategy space S = {0, 1, . . . , B}, as the analysis
over a continuous domain for f is only a tool for proving the lemma.
• Recall that an allocation function f is monotonic if each fi is non-decreasing in the bid of

player i, for any fixed choice of bids of all other players. In the exactly-valuation world, the
class of mechanismsMf ’s when f is both integrable and monotonic gives a full characterization
to all (very-weakly-)dominant-strategy-truthful mechanisms in single-good auctions.

14Specifically, we require that, for each v−i, the function fi(z, v−i) is integrable with respect to z on [0, B].
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Now, we want to slightly strengthen this notion of monotonicity.

Definition G.3. Let f : [0, B]N → [0, 1]N be a allocation function. For d ∈ {1, 2}, we say that f
is d-distinguishably monotonic (d-DM, for short) if f is integrable, monotonic, and satisfying
the following “distinguishability” condition:

∀ i ∈ N , ∀vi, v′i ∈ Si s.t. vi ≤ v′i − d, ∃ v−i ∈ S−i
∫ v′i

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz > 0 .

If f is d-DM, we say that Mf is d-DM.

Distinguishable monotonicity is certainly an additional requirement to monotonicity, but actu-
ally quite mild. Indeed, the second-price mechanism is 2-DM and, if ties are broken at random,
even 1-DM.15 Yet, in our approximate-valuation world, this mild additional requirement is quite
useful for “controlling” the undominated strategies of a mechanism, and thus for engineering im-
plementations of desirable social choice functions in undominated strategies.

Lemma G.4 (Distinguishable Monotonicity Lemma). If f is a d-DM allocation function,
then Mf is such that, for any player i and δ-approximate-valuation profile K,

UDedi(Ki) ⊆ {minKi, . . . ,maxKi} if d = 1, and

UDedi(Ki) ⊆ {minKi − 1, . . . ,maxKi + 1} if d = 2.

(Above, minKi and maxKi respectively denote the minimum and maximum integers in Ki.)

Proof. For every i ∈ N , let v⊥i
def
= minKi and v>i

def
= maxKi. Then, to establish our lemma it

suffices to prove that, ∀i ∈ N and ∀d ∈ {1, 2}, the following four properties hold:

1. v⊥i very-weakly dominates every vi ≤ v⊥i − d.

2. v>i very-weakly dominates every vi ≥ v>i + d.

3. There is a strategy sub-profile v−i for which v⊥i is strictly better than every vi ≤ v⊥i − d.

4. There is a strategy sub-profile v−i for which v>i is strictly better than every vi ≥ v>i + d.

Proof of Property 1. Fix any (pure) strategy sup-profile v−i ∈ S−i for the other players and any
possible true valuation θi ∈ Ki. Letting v⊥ = (v⊥i , v−i) and v = (vi, v−i), we prove that

E
[
ui
(
θi, F (v⊥)

)]
− E

[
ui
(
θi, F (v)

)]
=
(
fi(v

⊥)− fi(v)
)
· θi −

(
FPi (v⊥)− FPi (v)

)
=
(
fi(v

⊥)− fi(v)
)
· θi −

(
v⊥i · fi(v⊥)−

∫ v⊥i

0
fi(z, v−i) dz − vi · fi(v) +

∫ vi

0
fi(z, v−i) dz

)

=
(
fi(v

⊥)− fi(v)
)
· (θi − v⊥i ) +

∫ v⊥i

vi

(
fi(z, v−i)− fi(v)

)
dz .

15For example, the allocation function of the second-price mechanism with lexicographic tie-breaking is Mf , where
∀i ∈ N and ∀v ∈ {0, . . . , B}N :

fi(v)
def
=

{
1, if (a) vi > max v−i or (b) vi = max v−i and i = min{j : vj = vi};
0, otherwise.

(G.1)

To see that this mechanism is 2-DM, consider two bids vi and v′i of player i that are at least a distance of two
apart; by choosing a strategy sub-profile for the other players where the highest bid falls between vi and v′i, we can
ensure that the desired integral is positive. A slightly more refined argument shows that the second-price mechanism
breaking ties at random is 1-DM.

18



Now note that, since θi ∈ Ki, θi − v⊥i = θi − minKi ≥ 0; moreover, by the monotonicity of f ,
whenever z ≥ vi, it holds that fi(z, v−i) ≥ fi(v). We deduce that Eui

(
θi, F (v⊥)

)
≥ Eui

(
θi, F (v)

)
.

We conclude that v⊥i very-weakly dominates vi.
Proof of Property 2. Analogous to that of Property 1 and omitted.

Proof of Property 3. Due to the d-distinguishable monotonicity of M , vi ≤ v⊥i − d implies the

existence of a strategy sub-profile v−i making
∫ v⊥i
vi

(
fi(z, v−i)− fi(v)

)
dz strictly positive. For such

v−i, therefore, playing v⊥i is strictly better than vi.
Proof of Property 4. Analogous to that of Property 3 and omitted.

H Proof of Theorem 2.a

Theorem 2.a. Let M2P = (S2P, F2P) be the second-price mechanism with a deterministic tie-
breaking rule. Then, for all n, δ ∈ [0, 1), B, δ-approximate-valuation profiles K, true-valuation
profiles θ ∈ K, and strategy profiles v ∈ UDed(K):

SW
(
θ, F2P(v)

)
≥
(

1− δ
1 + δ

)2

MSW(θ)− 2
1− δ
1 + δ

. (H.1)

Proof. Let M2P = (S2P, F2P) be (a version of) the second-price mechanism with a deterministic
tie-breaking rule. Since K is a δ-approximate-valuation set, for each player i let xi be such that
Ki ⊆ δ[xi] ∩ {0, . . . , B}. Then, in light of (the Distinguishably Monotonicity) Lemma G.4 and the
previous observation that FA2P is a 2-DM allocation function, we have that, for each player i:

UDedi(x) ⊆
{
d(1− δ)xie − 1, . . . , b(1 + δ)xic+ 1

}
. (H.2)

Now we prove the lower bound to the social welfare. Let θ ∈ K be a candidate true-valuation
profile, i∗ the player with the highest valuation according to θ, and j∗ the player winning the good
under the bid profile v. (Thus, θi∗ = maxi θi and vj∗ = maxj vj .) We now bound the difference
between θi∗ and θj∗ when i∗ 6= j∗.

From Equation H.2 we know that d(1−δ)xi∗e−1 ≤ vi∗ and vj∗ ≤ b(1+δ)xj∗c+1. Because j∗ is
the winner, we also know that vi∗ ≤ vj∗ . Combining these facts and removing “floors and ceilings”
we have (1− δ)xi∗ ≤ (1 + δ)xj∗ + 2. Since we also know that θj∗ ≥ (1− δ)xj∗ and (1 + δ)xi∗ ≥ θi∗ ,
we obtain:

SW(θ, F2P(v)) = θj∗ ≥ (1− δ)xj∗ ≥ (1− δ)1− δ
1 + δ

xi∗ −
2(1− δ)
(1 + δ)

≥ (1− δ)1− δ
1 + δ

1

1 + δ
θi∗ −

2(1− δ)
(1 + δ)

=
(1− δ)2

(1 + δ)2
MSW(θ)− 2(1− δ)

(1 + δ)
.

Thus, the claim of our theorem holds. �
Consider the case where the second-price mechanism breaks ties at random (assigning a positive

probability to each tie). Then, one can use a proof analogous to the one above, with the only
difference being that FA2P is 1-DM (instead of only 2-DM), and invoking the stronger inclusion of
(the Distinguishably Monotonicity) Lemma G.4, to show the following, stronger lower bound:

E
[
SW

(
θ, F2P(v)

)]
≥ (1− δ)2

(1 + δ)2
MSW(θ) .
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I Proof of Theorem 3.a

In this section we explicitly construct and analyze the desired mechanism M
(δ)
opt. This process is not

going to be trivial, and thus we break it into several steps, providing intuition as needed.

I.1 A Very Restricted Search

In order to leverage our Distinguishable Monotonicity Lemma (Lemma G.4), it is natural for us

to search for M
(δ)
opt among 1-DM mechanisms. Let us now distill an additional requirement for the

underlying allocation function of such mechanisms that suffices for our goals. We shall do so in
terms of the following positive quantity Dδ: for all δ ∈ (0, 1),

Dδ
def
=

(
1 + δ

1− δ

)2

− 1.

Definition I.1. We say that a allocation function f is δ-good if it is 1-DM and:

∀ i ∈ N, ∀ v ∈ {0, 1, . . . , B}N ,
n∑
j=1

fj(v)vj +Dδ · fi(v)vi ≥
1

n
· vi(n+Dδ) . (I.1)

The reason why the additional requirement is sufficient is easily understood:

Lemma I.2. If f is δ-good, then Mf satisfies that such that for every δ-approximate-valuation
profile K, every strategy profile s ∈ UDed(K) and every true-valuation profile θ ∈ K:

E
[
SW

(
θ, F2P(v)

)]
≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)
MSW(θ) .

Proof. Let K be an arbitrarily chosen δ-approximate-valuation profile. Then, because in any allo-
cation the social welfare coincides with the welfare of a given player, to prove our lemma it suffices
to prove that

∀θ ∈ K, ∀v ∈ UDed(K), ∀i ∈ N,
n∑
j=1

θjfj(v) ≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)
θi . (I.2)

For every i ∈ N , let xi ∈ R be such that Ki ⊆ δ[xi], and let δ[x] = δ[x1] × · · · × δ[xn]. Then,
θ ∈ K and the Distinguishable Monotonicity Lemma respectively imply

(1− δ)xi ≤ θi ≤ (1 + δ)xi and (1− δ)xi ≤ minKi ≤ vi ≤ maxKi ≤ (1 + δ)xi.

Combining these two chains of inequalities yields

1− δ
1 + δ

vi ≤ θi ≤
1 + δ

1− δ
vi . (I.3)

Let us now argue that Equation I.2 holds by arbitrarily fixing v and i and showing that it is
impossible to construct a “bad” θ so as to violate Equation I.2.

In trying to construct a “bad” θ, it suffices to choose θj (for j 6= i) to be as small as possible,
since θj only appears on the left-hand side with a positive coefficient. For θi, however, we may

want to choose it as large as possible if fi(v) ≥
( (1−δ)2+ 4δ

n
(1+δ)2

)
, or as small as possible otherwise. So

there are two extreme θ’s.
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Considering these extreme choices, we conclude that no θ contradicts Equation I.2 if:

n∑
j=1

(1− δ
1 + δ

)
vjfj(v) ≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)(1− δ
1 + δ

)
vi , and

n∑
j=1

(1− δ
1 + δ

)
vjfj(v) +

(1 + δ

1− δ
− 1− δ

1 + δ

)
vifi(v) ≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)(1 + δ

1− δ
)
vi .

Simplifying the above equations, Equation I.2 holds if both the following inequalities hold:

n∑
j=1

vjfj(v) ≥ n+Dδ

n
· 1

Dδ + 1
· vi , (I.4)

n∑
j=1

vjfj(v) +Dδ · vifi(v) ≥ n+Dδ

n
vi . (I.5)

Note that Equation I.5 holds because it is implied by the hypothesis that f is δ-good; note also
that Equation I.4 holds because it is implied by Equation I.5. Indeed, since 1

Dδ+1 =
(
1−δ
1+δ

)2
< 1 for

all δ ∈ (0, 1),

n∑
j=1

vjfj(v) ≥ 1

Dδ + 1

 n∑
j=1

vjfj(v) +Dδvifi(v)

 ≥ 1

Dδ + 1

n+Dδ

n
vi .

Thus both Equation I.2 and our lemma hold.

I.2 Our Allocation Function

In light of our last lemma, all is left is to find a suitable δ-good allocation function f .

Some intuition. If the players’ bids are not “clustered”, then f should clearly give a much
higher probability mass to the highest bids, as lower bids are less likely to come from players with
high true valuations. However, when the highest bids are close to each other, it is hard for f to
“infer” from them who the player with the highest true valuation really is — after all, we are in
an approximate-valuation model. The intelligent thing for f to do in such a case is to assign the
good to a randomly chosen high-bidding player. To achieve optimality, however, one must be much
more careful in allocating probability mass, and some complexities should be expected.

Since the mechanism M
(δ)
opt of Theorem 3.a is allowed to depend on the approximation accuracy

δ, we construct its allocation function, f (δ), depending on it. Our proposed f (δ) derives from the
players’ bids a threshold, and probabilistically chooses the winning player only among those bids
lying above the threshold. We now explain the rationale for these choices.

Recall that, to be δ-good, a allocation function f : [0, B]N → [0, 1]N should satisfy Equation I.1,
that is:

∀ i ∈ N, ∀ v ∈ {0, 1, . . . , B}N ,
n∑
j=1

fj(v)vj +Dδ · fi(v)vi ≥
1

n
· vi(n+Dδ) .

A reasonable guess to “solve for f” is to restrict our attention to symmetric functions. The most
natural candidate is simply

∀z ∈ [0, B]N , fi(z) =
1

n
·
zi(n+Dδ)−

∑n
j=1 zj

ziDδ
.
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One could verify that the function f , in addition to being symmetric, sums up to 1, is 1-DM,
and satisfies the desired condition Equation I.1. (In fact, as we shall see, the above candidate f
coincides with our proposed f (δ) when no threshold is introduced.) We would be done, except for
one crucial fact: f sometimes takes negative values!

We therefore need to “patch” the guessed function f by forcing non-negativity while maintaining
the other required properties, and this is exactly where the idea of a threshold, winners, and losers
comes in. Roughly, only players with sufficiently low reported valuations are at risk of a “negative
probability” and, because are most likely to have low true valuations, we remove them from the
auction altogether. To preserve the other properties, though, we need to re-weight the function,
thereby obtaining Equation I.6. Thus, at high level, we simply keep removing players until all of
the players are given non-negative probability (by virtue of being in the auction or having been
thrown out). A similar idea previously appeared in [CLS+11].

While the introduction of a threshold fixes the “negativity problem”, it introduces additional
complexities. (For example, even the simple task of verifying monotonicity, where the bids of all
players but i are fixed, becomes non-trivial. Indeed, the number of winners n∗ varies as the bid of
player i increases, and thus the definition of f (δ) varies too.)

Let us now proceed more formally. Recall that Dδ
def
=
(
1+δ
1−δ
)2 − 1 > 0.

Definition I.3. For every δ ∈ (0, 1), define the function f (δ) : [0, B]N → [0, 1]N as follows: for
every i ∈ N and every z = (z1, . . . , zn) ∈ [0, B]N

• if z1 ≥ z2 ≥ · · · ≥ zn, then

f
(δ)
i (z)

def
=

{
1
n ·

n+Dδ
n∗+Dδ

· zi(n
∗+Dδ)−

∑n∗
j=1 zj

ziDδ
, if i ≤ n∗,

0, if i > n∗;
, (I.6)

where n∗ ∈ {1, 2, . . . , n} is the index in N (whose existence and uniqueness will be proved
shortly) such that

z1 ≥ · · · ≥ zn∗ >
∑n∗

j=1 zj

n∗ +Dδ
≥ zn∗+1 ≥ · · · ≥ zn . (I.7)

• else, f
(δ)
i (z)

def
= f

(δ)
π(i)(zπ(1), . . . , zπ(n)) where π is any permutation of the players such that

zπ(1) ≥ · · · ≥ zπ(n) (i.e., we define f
(δ)
i by extending it symmetrically).

We call
∑n∗
j=1 zj

n∗+Dδ
the threshold, players 1, . . . , n∗ the winners, and players n∗+1, . . . , n the losers.

Lemma I.4. f (δ) is a well-defined allocation function.

Proof. We first prove that n∗ exists and is unique, and begin with the existence of n∗.
Assume, without loss of generality, that z1 ≥ z2 ≥ · · · ≥ zn. Note that there exists an index n′

in N such that

∀ i > n′, zi ≤
∑n′

j=1 zj

n′ +Dδ
.

Indeed, Equation I.8 vacuously holds for n′ = n. Now take n′′ to be the least such index. Accord-
ingly,

∀ i > n′′, zi ≤
∑n′′

j=1 zj

n′′ +Dδ
. (I.8)

22



Next we claim that

∀ i ≤ n′′, zi >

∑n′′

j=1 zj

n′′ +Dδ
. (I.9)

To prove Equation I.9, it suffices to consider i = n′′ because z is non-increasing. Indeed, by the
minimality of n′′ we know that (“n′′−1 does not work”, that is) there exists some j ≥ n′′ such that

zn′′ ≥ zj >
∑n′′−1

j=1 zj

n′′ − 1 +Dδ
,

which, after rearranging, is equivalent to zn′′ >
∑n′′
j=1 zj

n′′+Dδ
as desired.

At last, combining Equation I.8 and Equation I.9, and choosing n∗ = n′′, Equation I.7 is
satisfied.

Next, we prove that n∗ is unique. Suppose by way of contradiction that there exist two integers
n⊥ and n>, with n⊥ < n> both satisfying Equation I.7. Now define

S⊥
def
=

n⊥∑
j=1

zj , S>
def
=

n>∑
j=1

zj , S∆ def
= S> − S⊥, and n∆ def

= n> − n⊥ .

By invoking Equation I.7 with n> and n⊥, we deduce that for i ∈ {n⊥ + 1, . . . , n>},

S⊥

n⊥ +Dδ
≥ zi >

S>

n> +Dδ
=

S⊥ + S∆

n⊥ + n∆ +Dδ
.

Averaging over all zi for i ∈ {n⊥ + 1, . . . , n>}, we get

S⊥

n⊥ +Dδ
≥ S∆

n∆
>

S⊥ + S∆

n⊥ + n∆ +Dδ
. (I.10)

Let us now show that the second inequality of Equation I.10 contradicts the first inequality Equa-
tion I.10:

S∆

n∆
>

S⊥ + S∆

n⊥ + n∆ +Dδ
⇔ (n⊥ + n∆ +Dδ)S

∆ > n∆(S⊥ + S∆)

⇔ (n⊥ +Dδ)S
∆ > n∆S⊥ ⇔ S∆

n∆
>

S⊥

(n⊥ +Dδ)
. (I.11)

The contradiction establishes the uniqueness of n∗.

We are left to prove that (a) f
(δ)
i (z) ≥ 0 for every i and z, and (b)

∑
i f

(δ)
i (z) ≤ 1 for every z.

(Indeed, the last two properties imply that f
(δ)
i (z) ≤ 1.)

Assume, again without loss of generality, that z1 ≥ z2 ≥ · · · ≥ zn. Equation I.7 tells us that
zi(n

∗ +Dδ)−
∑n∗

j=1 zj ≥ 0 for each i ≤ n∗, so (a) follows immediately. As for (b),

n∑
i=1

f
(δ)
i (z) =

1

n
· n+Dδ

n∗ +Dδ
·
n∗∑
i=1

zi(n
∗ +Dδ)−

∑n∗

j=1 zj

ziDδ

=
1

n
· n+Dδ

(n∗ +Dδ)Dδ
·

n∗(n∗ +Dδ)−
n∗∑
i=1

n∗∑
j=1

zj
zi


≤ 1

n
· n+Dδ

(n∗ +Dδ)Dδ
· (n∗(n∗ +Dδ)− n∗n∗) =

n+Dδ

n
· n∗

n∗ +Dδ
≤ 1 .
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Lemma I.5. f (δ) is monotonic.

Proof. By symmetry it suffices to show that f (δ) is monotonic with respect to the n-th coordinate.
Without loss of generality, assume z1 ≥ z2 ≥ · · · ≥ zn−1. We need to prove that for any z⊥n and z>n
with 0 ≤ z⊥n < z>n ≤ B,

f (δ)n (z−n, z
⊥
n ) ≤ f (δ)n (z−n, z

>
n ) . (I.12)

We will prove Equation I.12 in three steps.

• Step 1. Letting n′ be the number of winners in a game where only the first n − 1 players
are bidding z−n, we first prove that:

zn ≤
∑n′

j=1 zj

n′ +Dδ
−→ f (δ)n (z−n, zn) = 0 (i.e., n is a loser) (I.13)

zn >

∑n′

j=1 zj

n′ +Dδ
−→ f (δ)n (z−n, zn) > 0 (i.e., n is a winner) (I.14)

To show Equation I.13, recall that, in the game with only the first n− 1 players bidding z−n,
we have n′ winners satisfying,

∀i ∈ {1, 2, . . . , n′}, zi >
∑n′

j=1 zj

n′ +Dδ
; ∀i ∈ {n′ + 1, . . . , n− 1}, zi ≤

∑n′

j=1 zj

n′ +Dδ
.

Then imagine that player n comes with bid zn that is at most
∑n′
j=1 zj

n′+Dδ
. In this new game,

because the threshold does not change, the set of winners continues to be {1, 2, . . . , n′} and
therefore n must be a loser. Indeed,

∀i ∈ {1, 2, . . . , n′}, zi >
∑n′

j=1 zj

n′ +Dδ
; ∀i ∈ {n′ + 1, . . . , n}, zi ≤

∑n′

j=1 zj

n′ +Dδ
.

To show Equation I.14, we actually prove its contrapositive: namely,

f (δ)n (z−n, zn) = 0 (i.e. n is a loser) −→ z ≤
∑n′

j=1 zj

n′ +Dδ
.

Let n∗ be the number of winners when f
(δ)
n (z−n, zn) = 0, that is, in the game where there are

n players, the bid profile is z, and player n is a loser; then,

∀i ∈ {1, 2, . . . , n∗}, zi >
∑n∗

j=1 zj

n∗ +Dδ
; ∀i ∈ {n∗ + 1, . . . , n}, zi ≤

∑n∗

j=1 zj

n∗ +Dδ
.

The above also implies the following, where player n has been removed:

∀i ∈ {1, 2, . . . , n∗}, zi >
∑n∗

j=1 zj

n∗ +Dδ
; ∀i ∈ {n∗ + 1, . . . , n− 1}, zi ≤

∑n∗

j=1 zj

n∗ +Dδ
.

This means, n∗ is also the number of winners for the (n− 1)-player game, i.e., n∗ = n′. This

gives zn ≤
∑n∗
j=1 zj

n∗+Dδ
=

∑n′
j=1 zj

n′+Dδ
.
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Because of Step 1, we only need to show Equation I.12 for z⊥n and z>n satisfying z>n > z⊥n >∑n′
j=1 zj

n′+Dδ
. Notice that in such a case, player n is always a winner. Therefore, let {1, . . . , n⊥, n} and

{1, . . . , n>, n} be the winners when the bid profiles are (z−n, z
⊥
n ) and (z−n, z

>
n ) respectively.

• Step 2. We now prove that
n⊥ ≥ n> . (I.15)

Assume by way of contradiction that n⊥ < n> and. As in Lemma I.4, set n∆ def
= n> − n⊥,

S⊥
def
=
∑n⊥

j=1 zj and S>
def
=
∑n>

j=1 zj = S⊥ + S∆. Then each player i, with n⊥ ≤ i < n>, is
a loser when the bid profile is (z−n, z

⊥
n ) while a winner when the bid profile is (z−n, z

>
n ); in

particular,
S⊥ + z⊥n

n⊥ + 1 +Dδ
≥ zi >

S> + z>n
n> + 1 +Dδ

=
S⊥ + S∆ + z>n

n⊥ + n∆ + 1 +Dδ
.

Averaging over all n⊥ ≤ i < n> we get:

S⊥ + z⊥n
n⊥ + 1 +Dδ

≥ S∆

n∆
>

S⊥ + S∆ + z>n
n⊥ + n∆ + 1 +Dδ

but this is already a contradiction, since the right hand side is equivalent to (using a similar
technique as Equation I.11):

S∆

n∆
>

S⊥ + S∆ + z>n
n⊥ + n∆ + 1 +Dδ

⇔ S∆

n∆
>

S⊥ + z>n
n⊥ + 1 +Dδ

,

which actually contradicts the left hand side, as z>n > z⊥n . Therefore, n⊥ ≥ n>.

We now use the fact that n⊥ ≥ n> to obtain Equation I.12 for such z⊥n and z>n satisfying

z>n > z⊥n >
∑n′
j=1 zj

n′+Dδ
.

• Step 3. We now prove Equation I.12.

If n⊥ = n>, then for both (z−n, z
>
n ) and (z−n, z

⊥
n ), the set of winners is {1, 2, . . . , n⊥, n}. Let

n∗ = n⊥ + 1 = n> + 1 be the number of winners and we get

f (δ)n (z−n, z
⊥
n ) =

1

n
· n+Dδ

n∗ +Dδ
·
z⊥n (n∗ +Dδ)−

∑n∗−1
j=1 zj − z⊥n

z⊥nDδ

≤ 1

n
· n+Dδ

n∗ +Dδ
·
z>n (n∗ +Dδ)−

∑n∗−1
j=1 zj − z>n

z>nDδ
= f (δ)n (z−n, z

>
n ) .

If n⊥ > n>, let n⊥ = n> + n∆, S> =
∑n>

j=1 zj and S⊥ =
∑n⊥

j=1 zj = S> + S∆ as before. Then
we average over all zi for n> < i ≤ n⊥ and get:

S∆

n∆
>

S⊥ + z⊥n
n⊥ + 1 +Dδ

=
S> + S∆ + z⊥n

n> + n∆ + 1 +Dδ
. (I.16)

But this is equivalent to (again using the same technique as Equation I.11)

S∆

n∆
>

S> + z⊥n
n> + 1 +Dδ

. (I.17)
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Letting C1 = n+Dδ
n , we now do the final calculation:

f (δ)n (z−n, z
>
n )− f (δ)n (z−n, z

⊥
n )

= C1 ·
(z>n (n> + 1 +Dδ)− S> − z>n

(n> + 1 +Dδ)z>n
− z⊥n (n⊥ + 1 +Dδ)− S⊥ − z⊥n

(n⊥ + 1 +Dδ)z⊥n

)
= C1 ·

( S⊥ + z⊥n
(n⊥ + 1 +Dδ)z⊥n

− S> + z>n
(n> + 1 +Dδ)z>n

)
= C2 ·

(
(S⊥ + z⊥n )(n> + 1 +Dδ)z

>
n − (S> + z>n )(n⊥ + 1 +Dδ)z

⊥
n

)
= C2 ·

(
(S> + S∆ + z⊥n )(n> + 1 +Dδ)z

>
n − (S> + z>n )(n> + n∆ + 1 +Dδ)z

⊥
n

)
= C2 ·

(
S>(n> + 1 +Dδ)(z

>
n − z⊥n ) + S∆(n> + 1 +Dδ)z

>
n − n∆(S> + z>n )z⊥n

)
≥ C2 ·

(
S>(n> + 1 +Dδ)(z

>
n − z⊥n ) + S∆(n> + 1 +Dδ)z

>
n − n∆(S> + z⊥n )z>n

)
≥ 0

Here the last inequality has used z>n − z⊥n ≥ 0 and S∆(n> + 1 + Dδ) − n∆(S> + z⊥n ) > 0 (by
Equation I.17).

This finishes the proof that f (δ) is monotonic. �

Lemma I.6. f (δ) is 1-distinguishably monotonic.

Proof. We already know from Lemma I.5 that f (δ) is monotonic. Also, the integrability of f (δ)

is obvious, because f (δ) is piecewise continuous, and there are at most n pieces, as the number
of winners decreases when zn increases (recall Equation I.15). We are therefore left to prove the
“distinguishability condition”.

Fix a player i ∈ N and two distinct valuations vi, v
′
i ∈ {0, 1, . . . , B}, and assume that vi < v′i.

Define v−i
def
= (vi, vi, . . . , vi), then:

• f(vi, v−i) = 1
n since there are n winners, all bidding the same valuation.

• f(z, v−i) = 1
nDδ

(Dδ + n− 1− vi
z (n− 1)) > 1

n , when vi < z ≤ (1 +Dδ)vi.

Here the upper bound z ≤ (1 + Dδ)vi is to make sure that the number of winners is still n on
input (z, v−i). Notice that f(z, v−i) is a function that is strictly increasing when z increases in such
range, and therefore∫ v′i

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz ≥

∫ min{v′i,(1+Dδ)vi}

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz > 0 ,

as desired.

Lemma I.7. f (δ) is δ-good.

Proof. We already know from Lemma I.6 that f (δ) is 1-DM. Therefore, in order to prove that f (δ)

is δ-good, we only need to show that Equation I.1 holds. We will actually prove that Equation I.1
holds not only for the discrete cube {0, 1, . . . , B}N but also in the continuous cube [0, B]N .

Without loss of generality, assume z1 ≥ z2 ≥ · · · ≥ zn. We first observe that:

n∑
i=1

f
(δ)
i (z)zi =

n∗∑
i=1

f
(δ)
i (z)zi =

1

n
· n+Dδ

n∗ +Dδ
·
n∗∑
i=1

zi(n
∗ +Dδ)−

∑n∗

j=1 zj

Dδ

=
1

n
· n+Dδ

n∗ +Dδ
·

(
n∗∑
i=1

zi

)
.
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For each player k with k > n∗, because he is a loser, we have,

n∑
j=1

f
(δ)
j (z)zj +Dδ · f

(δ)
k (z)zk =

n∑
i=1

f
(δ)
i (z)zi =

n+Dδ

n
·
∑n∗

i=1 zi
n∗ +Dδ

≥ n+Dδ

n
· zk

satisfying Equation I.1, where the last inequality is due to k > n∗ and Equation I.7.
For each winner i (i.e., with i ≤ n∗), we have

n∑
j=1

f
(δ)
j (z)zj +Dδ · f

(δ)
i (z)zi =

1

n
· n+Dδ

n∗ +Dδ
·

(
n∗∑
i=1

zi

)
+Dδ · f

(δ)
i (z)zi

=
1

n
· n+Dδ

n∗ +Dδ
zi(n

∗ +Dδ) =
1

n
· zi(n+Dδ)

again satisfying Equation I.1.

I.3 Our Mechanism M
(δ)
opt

Theorem 3.b. ∀n, ∀δ ∈ (0, 1), and ∀B, there exists a mechanism M
(δ)
opt such that for every

δ-approximate-valuation profile K, every true-valuation profile θ ∈ K, and every strategy profile
v ∈ UDed(K):

E
[
SW

(
θ, F2P(v)

)]
≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)
MSW(θ) .

Proof. By Lemma I.7, the function f (δ) from Definition I.3 is a (well-defined) allocation function

that is also δ-good. Therefore, invoking Lemma I.2, the mechanism M
(δ)
opt

def
= Mf (δ) yields the target

social welfare. �

Finally, we note that M
(δ)
opt can be implemented efficiently (just like the second-price mechanism):

Claim I.8. The outcome function F of M
(δ)
opt is efficiently computable.

Proof. It suffices to show that both the allocation function FA = f (δ)
∣∣
{0,1,...,B}N and expected price

function FP are efficiently computable over {0, 1, . . . , B}N .
First, f (δ) is efficiently computable for trivial reasons: the number of winners n∗ is between 1

and n and can be determined in linear time.
However, FP is efficiently computable for a more involved reason. Without loss of generality,

we show how to compute the expected price for player n as a function of vn, i.e.,

FPn (v−n, vn) = f (δ)n (v−n, vn) · vn −
∫ vn

0
f (δ)n (v−n, z) dz .

Indeed, when v−n is fixed, f
(δ)
n is a function piece-wisely defined according with respect to vn,

since different values of vn may result in different numbers of winners n∗. Assume without loss of
generality that v1 ≥ v2 ≥ · · · ≥ vn−1, and let n′ be the number of winners when player n is absent.

When vn ≤
∑n′
j=1 vj

n′+Dδ
, the proof of the monotonicity of f (δ) implies that f

(δ)
n = 0, so that integral

below this line is zero.

When vn >
∑n′
j=1 vj

n′+Dδ
, one can again see from the proof of the monotonicity of f (δ) that n∗ is

non-increasing as a function of vn. Therefore, f
(δ)
n contains at most n different pieces and, for
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each piece with n∗ fixed, f
(δ)
n (v−n, vn) = a + b/vn is a function that is symbolically intergrable.

Therefore, the only question is how to calculate the pieces for f
(δ)
n .

This is again not hard, by using a simple line sweep method. One can start from vn =
∑n′
j=1 vj

n′+Dδ
and move vn upwards. At any moment, one can calculate the earliest time that Equation I.7 is

violated, and claim that another piece of f
(δ)
n is found.

J Performance Diagrams
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(a) With n = 2 players, the second-price mechanism
performs worse than randomly assigning the good for
δ > 0.18.
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(b) With n = 4 players, the second-price mechanism
performs worse than randomly assigning the good for
δ > 0.34.
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(c) With δ = 0.15, the second-price mechanism al-
ways performs better than randomly assigning the
good.
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(d) With δ = 0.3, the second-price mechanism per-
forms worse than randomly assigning the good for
n = 2, 3.

Figure 1: We compare the social welfare guarantees of randomly assigning the good (ε = 1
n), the

second-price mechanism (ε = (1−δ)2

(1+δ)2
, see Theorem 2), and our optimal mechanism (ε = (1−δ)2+ 4δ

n
(1+δ)2

,

see Theorem 3). In (1a) and (1b) we compare ε versus δ, and in (1c) and (1d) we compare ε versus
n. The green data, our mechanism, is always better (at times significantly) than the other two
mechanisms.
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