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Abstract

We study the social welfare performance of the VCG mechanism in the well-known and chal-
lenging model of self uncertainty initially put forward by Frank H. Knight and later formalized
by Truman F. Bewley. Namely, the only information that each player i has about his own true
valuation consists of a set of distributions, from one of which i’s valuation has been drawn.

We assume that each player knows his true valuation up to an additive inaccuracy δ, and
study the social welfare performance of the VCG mechanism relative to δ > 0. In this paper,
we focus on the social welfare performance of the VCG mechanism in unrestricted combinatorial
auctions, both in undominated strategies and regret-minimizing strategies. Denote by MSW
the maximum social welfare.

Our first theorem proves that, in an n-player m-good combinatorial auction, the VCG mech-
anism may produce outcomes whose social welfare is ≤ MSW − Ω(2mδ), even when n = 2
and each player chooses an undominated strategy. We also geometrically characterize the set of
undominated strategies in this setting.

Our second theorem shows that the VCG mechanism performs well in regret-minimizing
strategies: the guaranteed social welfare is ≥ MSW−2 min{m,n}δ if each player chooses a pure
regret-minimizing strategy, and ≥ MSW −O(n2δ) if mixed strategies are allowed.

Finally, we prove a lemma bridging two standard models of rationality: utility maximization
and regret minimization. A special case of our lemma implies that, in any game (Knightian
or not), every implementation for regret-minimizing players also applies to utility-maximizing
players who use regret only to break ties among their undominated strategies. This bridging
lemma thus implies that the VCG mechanism continues to perform very well also for the latter
players.

∗The one-paged abstract of this paper has appeared in the 15th ACM Conference on Economics and Computation
(ACM-EC 2014). The weaker versions of our first, second theorems and the bridging lemma have respectively been
organized as three independent technical reports [CMZ14b], [CMZ14c], and [CMZ14a].
†The authors would like to thank Jelani Nelson, Rafael Pass and Luca Trevisan for helpful discussions, the

Skolkovo Foundation (under agreement dated 10/26/2011), and two Simons Graduate Student Awards (under grant
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1 Introduction

In a private-value auction, a valuation is a function mapping each possible allocation of the good(s)
to a real number. Private-value auctions are traditionally studied in the exact-valuation model,
that is, assuming that every player i knows his own true valuation, θ∗i , exactly. This assumption
cannot hold in all concrete applications. We thus wish to investigate what happens to a classical
auction mechanism, the VCG, when some (or every) player i is uncertain about θ∗i .

A traditional way to capture such self uncertainty is the ‘single-distribution’ model, which
assumes that a player i only knows the true distributionDi (over the set of all his possible valuations,
Θi) from which θ∗i has been drawn. This assumption, however, may be too strong. Sometimes,
a player i may not even be able to establish which of two candidate valuations is ‘more likely’ to
be θ∗i . We thus study the VCG mechanism under a more general model, envisaged by Frank H.
Knight almost a century ago, and later formalized by Truman F. Bewley.

The Knightian Auction Model. Informally, focusing on auctions and letting θ∗ be the profile
of true valuations, for each player i,

i’s sole information about θ∗ consists of Ki, a set of distributions over Θi,
from one of which θ∗i has been drawn. (The true valuations are uncorrelated.)

That is, Ki is the sole (and private) information that i has about his own true valuation θ∗i .
Furthermore, for every opponent j, i has no information (or beliefs) about θ∗j or Kj . Therefore, not
only is our model one of extreme incomplete information, but also one of incomplete preferences.

Let us give two simple examples of Knightian auctions of a single good.

Example 1. A player i knows that θ∗i is drawn from a Gaussian distribution N(µ, σ) over R, but
not the mean, µ, nor the standard deviation, σ, of N(µ, σ). He only knows that µ = 10± 1 and
σ = 2± 1. Thus, Ki = {N(µ, σ) : µ ∈ [9, 11], σ ∈ [1, 3]}.

Example 2. The good is an exclusive licence to a cryptographic algorithm whose security is based
on unproven mathematical assumption A. Then a player i’s valuation may be drawn from a
distribution D0 if A is false, and from a distribution D1 if A is correct. Thus, Ki = {D0, D1}.

A Mathematically Equivalent Model. For the auctions we consider (single-good, multi-unit,
and unrestricted-combinatorial), an equivalent formulation of the Knightian model is the following:
for each player i,

i’s sole information about θ∗ consists of Ki ⊆ Θi,
a set of valuations that includes θ∗i .

We refer to Ki as the candidate (valuation) set of player i.
The equivalence between the latter and the previous formulation is due to the fact that a player

i may ‘collapse’ each distribution Di ∈ Ki to its expectation E(Di), given that all he cares about is
his expected (quasi-linear) utility.1

Example: Consider an auction of two goods, a and b. In this case, a player’s valuation
consists of a triple (va, vb, v{a,b}), where va is his value for a alone, vb for b alone, and v{a,b} for
a and b together. Suppose a player i knows that θ∗i is drawn from a distribution Di over such

triples, and let (ea, eb, e{a,b})
def
= Eθi∼Di

[(
θi(a), θi(b), θi({a, b})

)]
. Now, consider any outcome

ω of the auction. Without loss of generality, let ω be such that i wins good a and pays price

1Indeed, whatever the auction mechanism used, this equivalence holds for any auction where each Θi is a convex
set.
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p. Then, i’s expected utility for ω is Eθi∼Di [θi(a)]− p = ea− p, as if his θ∗i were (ea, eb, e{a,b}).
Since this is true for any (even probabilistically chosen) outcome, i may very well act as if his
true valuation were exactly θ∗i = (ea, eb, e{a,b}).

Clarification. We could have started (and indeed originally started our paper) directly with this
second model, but

1. The Knightian model is a classical one, studied for almost a century; and

2. The second model appears contrived until one realizes that is logically equivalent to the Knigh-
tian one.

The second model may appear counter-intuitive because a candidate set Ki may not be convex.
In Example 2, letting d0 = E[D0] and d1 = E[D1], we have Ki = {d0, d1}, which is not convex if
d0 6= d1. Non convexity may be puzzling, because in a typical single-good auction we would expect
that a player having a and b as two possible valuations must also have a+b

2 as another possible
valuation. Let us stress that ‘the possibility of holes’ in Ki is not a restriction, nor a speciousness
of our model. To the contrary, it is the natural sub-product of the generality of the Knightian
setting.

To make our results stronger, when proving that a mechanism performs well, we consider all
possible candidate sets, including non convex ones. When proving that a mechanism performs
poorly, we only consider candidate sets that are convex.

δ-Approximate Knightian Auctions. In an auction where some of the players are Knightian,
a mechanism’s performance of course depends on the inaccuracy of the players’ knowledge about
themselves. In an auction of a single good, we say that the candidate set of a player i is δ-
approximate if supKi − inf Ki ≤ δ, and that the auction is δ-approximate if all players have
δ-approximate candidate sets. These notions naturally extend to the combinatorial auction we
consider (see Section 1.1).

1.0 Prior Results and New Goals

As discussed in the Related Work Section 2, the Knightian setting has been extensively studied in
decision theory. However, the only results in auctions are those in our prior work [CMZ12].

Our prior results. Notice that, although Knightian players may not be aware of their own
true valuations, these valuations still exist, and the maximal social welfare (MSW) continues to be
defined over them. In [CMZ12], we focused on single-good auctions and proved

• In dominant strategies or at ex-post Nash equilibrium, no mechanism —even one allowing
the players to report sets of valuations rather than a single valuation— can guarantee social
welfare greater than MSW/n.2

• In undominated strategies, the second-price mechanism guarantees social welfare ≥ MSW−
2δ in single-good auctions.3

Our new goals. In this paper we study the social-welfare performance of the VCG mechanism,
in a Knightian setting, for the challenging unrestricted combinatorial auctions.4

2That is, the same guarantee offered by the trivial mechanism that, disregarding all of the players’ strategies,
assigns the good to a random player.

3In our unpublished manuscripts, we have shown that this result generalizes to all single-parameter domains using
similar techniques [CMZ14d], and the Vickrey mechanism guarantees social welfare ≥ MSW − 2mδ in multi-unit
auctions [CMZ14e].

4We acknowledge that the VCG mechanism admits computational-complexity issues [BDF+10, DV11]; in this
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When analyzed with Knightian players, the VCG continues to be the mechanism we all know
and love, where each player i must report a single valuation, no matter how uncertain about θ∗i
he may be. In the Knightian setting, therefore, the VCG no longer is dominant-strategy. But, as
recalled above, it continues to perform very well in single-good auctions.

1.1 Theorem 1: VCG Auction in Undominated Strategies

In an (unrestricted) combinatorial auction of n players and m goods, the set of possible allocations
A consists of all possible partitions of [m] (the set of m goods) into 1 +n subsets (A0, A1, . . . , An),
where A0 is the (possibly empty) set of unassigned goods and Ai is the (possibly empty) set of goods
assigned to player i. Given an allocation A = (A0, A1, . . . , An), player i has valuation θ∗i (Ai) ∈ R≥0
if Ai 6= ∅ and 0 if Ai = ∅.5

In a Knightian (unrestricted) combinatorial auction, the only information i has about the true
valuation profile θ∗i lies in Ki. Letting Ki(S) := {θi(S)}θi∈Ki , we say that Ki is δ-approximate if
supKi(S)− inf Ki(S) ≤ δ for all non-empty S ⊆ [m]. We prove that,

Theorem 1 (Informal). In a δ-approximate combinatorial Knightian auction with n ≥ 2 players
and m goods, the VCG cannot, in undominated strategies, guarantee social welfare greater than
MSW − (2m+1 − 5)δ.

(The formal statement and proof of Theorem 1 can be found in Appendix 4.)
In fact, in this case we have been able to characterize UDi, the set undominated strategies of

a player i. This time, UDi is much larger than Ki. Player i may choose an (almost arbitrary)
constant fraction of the coordinates S ⊆ 2[m], and deviate from Ki(S) by an additive factor as
large as Θ(2mδ) for all S ∈ S. This strategy remains undominated for player i!

Perhaps more surprisingly, characterizing the undominated strategies of the VCG in unrestricted
combinatorial auctions is much harder. Indeed, even describing the resulting set UDi is challenging.
(Indeed, we resort to geometry in order to describe it in a succinct way.)

Theorem 1 is somewhat disconcerting, if we feel that the VCG should always be the mechanism
of choice for getting good social welfare, even when the players are Knightian, and even when the
players are belief-free. But there are other solution concepts to consider.

1.2 Theorem 2: VCG Auctions in Regret-Minimizing Strategies

So far we have analyzed the VCG under all solution concepts traditionally used in private-value and
belief-free auctions of incomplete information, assuming that the players are utility maximizers. We
now analyze the VCG’s performance in Knightian auctions in regret-minimizing strategies. The
notion of a regret-minimizing strategy naturally extends to the Knightian setting. Informally, the
regret of a strategy si of a player i is the maximum difference, taken over all possible strategy
choices of i’s opponents and all possible choices of θi in Ki, between the utility i gets by playing si
and the utility he gets by best responding to those choices. A regret-minimizing player i chooses
strategies that minimize his regret.

With respect to pure regret-minimizing strategies, we prove the following

paper we choose to focus on how the Knightian players rationally behave in VCG ignoring such complexity issues.
It turns out this is already a very non-trivial question to tackle, not to say that in practice it is also interesting to
study the VCG mechanism on selling 10 goods to 10 players, which is computationally tractable on a modern PC.

5All of our results for combinatorial auctions actually also hold even under a mild restriction on the players’
valuation, namely, when they are set-monotone (or with free disposal): that is, θi(S) ≤ θi(T ) whenever S ⊆ T .
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Theorem 2 (Informal). In a δ-approximate combinatorial Knightian auction with n players and
m goods, the VCG guarantees social welfare ≥ MSW − 2 min{n,m}δ in pure regret-minimizing
strategies.

(We prove Theorem 2 in Section 5.)
That is, in combinatorial Knightian auctions, the performance of the VCG in (pure) regret

minimizing strategies is absolutely stellar. Theorem 2 is less intuitive than it seems, because in a
combinatorial, Knightian, VCG auction it is not obvious which strategies are regret-minimizing.
Consider a player i who (1) happens to know that his true valuation for some subset of the good
S lies in some interval [xS , xS + δ], and (2) chooses to play a pure, regret-minimizing strategy vi.
At first glance, it would appear that vi(S) should coincide with the center of the interval, that
is, vi(S) = xS + δ/2. In reality, however, vi(S) need not even belong to the interval [xS , xS + δ].
Nevertheless, we prove that it cannot lie too far from the interval.

Mixed Strategies. For simplicity, Theorem 2 has been stated for pure strategies. Indeed,
as shown in Appendix E.1, significant difficulties arise when dealing with mixed strategies. For
instance, we must deal with the fact that a regret-minimizing mixed strategy can, in expectation
and for each subset S, be arbitrarily far away from K(S)! However, Theorem 2 essentially continues
to hold when allowing mixed strategies, but with a worse bound. Roughly, min{n,m} is replaced
by n2 (or even n log n if the valuations are set-monotone).6

1.3 The Meaningfulness of Theorem 2 and a Rationality Bridge Lemma

In principle, Theorem 2 or any other implementation in regret-minimizing strategies would be
irrelevant, in the exact-valuation or in the Knightian setting, if at least one player is not a regret
minimizer but a utility maximizer. However, we show that a separate lemma relating these two basic
models of rationality in all games (with or without Knightian players), indicates that Theorem 2
may retain some meaningfulness. Let us explain.

• A utility-maximizing player U eliminates all his dominated strategies to compute his set of
undominated ones, UD. Notice that U cannot further refine UD based on utility maximization
alone. If UD consists of a single strategy s (necessarily a dominant one), then U of course
chooses s. But:
if UD contains multiple strategies, which ones might U prefer?

• A regret-minimizing player R eliminates all his non regret-minimizing strategies so as to com-
pute his set of regret-minimizing strategies, RM. He might even continue this process k times,
until he is satisfied or no further elimination is possible. Let us denote the final set of strategies
he obtains this way by RMk. If RMk consists of a single strategy s, he of course chooses s.
But:
if RMk contains multiple strategies, which ones might R prefer?

A possible answer is that, when he is no longer able to apply his ‘favorite way of reasoning’, even
a die-hard utility maximizer U will resort to regret minimization to refine UD, and even a die-hard
regret minimizer R will resort to utility maximization to refine RMk. In principle, the two final
sets of strategies obtained by such different refinement procedures could be vastly different. Our
mentioned lemma, however, guarantees that they coincide.

6That is, vi(S) ≤ vi(T ) for all S ⊆ T ⊆ [m], all i, and all vi ∈ Θi. The interested reader can consult Appendix E
for the mixed-strategy version of Theorem 2.
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Abusing notation a bit, consider UD and RM also to be ‘operators’ acting on sets of strategies.
In this case UD(UD) = UD, while RM2 def

= RM(RM) may be a strict subset of RM. Then, our
structural lemma can be expressed as follows.

Lemma 1 (Rationality Bridge Lemma, proved in Appendix A).
The set of strategies obtained after applying, in arbitrary order, k times the operator RM and

at least once the operator UD coincides with RMk ∩ UD.

For instance, RM(RM(UD(RM(RM(UD))))) = RM4(UD) = RM4 ∩ UD.
A formal statement and proof of the above lemma can be found in Appendix A. Here we wish just
to mention the following implication for mechanism design:

For all mechanisms M and social choice correspondences f ,
if M implements f in RM strategies or in UD strategies,
then M is automatically guaranteed to implement f also in RM(UD) strategies.7

Relative to the VCG, this guarantee implies that Theorem 2 continues to hold in RM(UD) strategies.
That is, assuming that the players consider solely pure strategies,

Corollary 1. In a δ-approximate combinatorial Knightian auction with n players and m goods,
the VCG guarantees social welfare ≥ MSW − 2 min{n,m}δ (not only when the players are regret
minimizers, but also) when the players are utility maximizers who use regret only to break ties.

(A similar corollary holds for the mentioned mixed-strategy version of Theorem 2.)

1.4 In Sum

The fact that the VCG is no longer dominant-strategy in Knightian auctions is ‘no big loss’.
Indeed, no dominant strategy mechanism can do better than assigning the goods at random, even
in single-good auctions.

The fact that the VCG has excellent, and indeed essentially optimal, social-welfare perfor-
mance in undominated strategies in multi-unit (and thus also in single-good) Knightian auctions
demonstrates the wide relevance of the VCG.

The fact that the social-welfare performance of the VCG in combinatorial Knightian auctions
is extremely poor in undominated strategies is just another hard fact of life. However, per the
Rationality Bridging Lemma, once we assume that even die-hard utility maximizers resort to regret
minimization when they are forced to break ties, then the VCG continues to be the mechanism
of choice for good social welfare, even in the Knightian setting and in unrestricted combinatorial
auctions.

In sum, as most things classical, the VCG outlives the confines in which it was conceived, and
continues to be relevant in new and unforeseen settings.

1.5 Roadmap

We discuss the related work in Section 2, and provide basic definitions in Section 3.
The proof of Theorem 1 is very technically involved, so we divide it into four sections. In Sec-

tion 4 we sketch a two-paged proof of a weaker form of Theorem 1 to gain intuition. In Appendix B,

7Indeed, for i = 1 the bridging lemma implies that RM(UD) = RM ∩ UD ⊆ RM. Of course, to enforce the same
guarantee one could just demand that M implements f in RM ∪ UD strategies, but this is a very strong demand.
Indeed RM ∪ UD could be a much larger set than RM ∩ UD.
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we state the stronger version of Theorem 1 that also includes the geometric characterization of the
player’s undominated strategies. The full proof is contained in Appendix C and D.

We provide the full proof of the pure strategy version of Theorem 2 in Section 5, and in
Appendix E, we state and prove the mixed-strategy version of Theorem 2.

The proof of our structural lemma can be found in Appendix A.

2 Related Work

Models of Type Uncertainty. The Knightian model was originally proposed by Knight [Kni21]
and formalized by Bewley [Bew02].

Knightian players have received much attention in decision theory. In particular, Aumann [Aum62],
Dubra, Maccheroni and Ok [DMO04], Ok [Ok02], and Nascimento [Nas11] investigate decision with
incomplete orders of preferences. Various criteria for selecting a single distribution out of a set of dis-
tributions have been studied by Danan [Dan10], Schmeidler [Sch89], Gilboa and Schmeidler [GS89].
(In fact, Bose, Ozdenoren and Pape [BOP06] and Bodoh-Creed [Bod12] use the model from [GS89]
to study auctions.)

General equilibrium models with incompletely ordered preferences have been considered by
Mas-Colell [Mas74], Gale and Mas-Colell [GM75], Shafer and Sonnenschein [SS75], and Fon and
Otani [FO79]. More recently, Rigotti and Shannon [RS05] characterize the set of equilibria in a
financial market problem.8

Single-player mechanisms, in the Knightian model, for the rent-extraction problem have been
studied by Lopomo, Rigotti, and Shannon [LRS09], under two notions of implementation. Namely,
(1) when reporting the truth is at least as good as any other strategy, and (2) when reporting the
truth is not strictly eliminated in favor of another strategy.9

Although they are quite different from the Knightian model, a few other models of player un-
certainty should be mentioned. For instance, Milgrom [Mil89], in single-good auctions, studies
the revenue difference between second-price and English auctions, when the players do not exactly
know their own valuations, but only that they are drawn from a common distribution. Sand-
holm [San00] presents an example of an auction (with a non quasi-linear utility function) where
a player’s valuation is drawn from the uniform distribution over [0, 1], and argues that reporting
the expected valuation (i.e., 0.5) is no longer dominant-strategy. Mechanisms for scheduling, when
each player knows a single distribution where his type is drawn, have been studied by Porter, Ro-
nen, Shoham and Tennenholtz [PRST08], and by Feige and Tennenholtz [FT11]. Thompson and
Leyton-Brown [TLB07] provide an extensive summary of works on Bayesian self-uncertainties.

Undominated Strategies. Implementations in undominated strategies trace back to Jackson
[Jac92, JPS94]. Although being a well-known solution concept, very few positive results on mech-
anism design have been achieved so far. Beyond the positive example in [Jac92], Babaioff et
al. [BLP06] provide an efficient mechanism for single-value multi-minded auctions, and Abreu and
Matsushima [AM92] achieve perfect revenue in the complete information setting. Our prior work
on the Knightian mechanism design is another example [CMZ12].

Regret-Minimizing Strategies. Regret-minimizing strategies are also known as regret-minimax
strategies. The suggestion of adopting regret-minimizing (a.k.a. regret-minimax) strategies traces

8A strategy profile is an equilibrium if no player can deviate and strictly benefit no matter which distribution is
picked from his set. Notice that such an equilibrium is not a notion of dominance.

9Notice that, not envisaging other players, these are not notions of dominance in the Knightian setting. Indeed,
even in the exact-valuation setting, the notion of dominance should take into account all possible choices of strategies
of the other players.
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back to Savage’s reading [Sav51] of the work of Wald [Wal49], and has been axiomatized by
Milnor [Mil54]. The notion of regret has been treated differently in different settings. A unified
axiomatic characterization of minimax regret has been recently given by Stoye [Sto11].

Mechanisms have also been studied under minimax regret. Linhart and Radner [LR89] study
minimax-regret strategies in a sealed-bid mechanism for bilateral bargaining under complete infor-
mation. Engelbrecht-Wiggans [Eng89] and Selten [Sel89] analyze first- and second-price sealed-bid
auctions by incorporating regret for the bidders. In more general settings, minimax-regret strategies
are mostly studied when a player has (Bayesian or set-theoretic) beliefs about his opponents. In
particular, Hyafil and Boutilier [HB04] and Renou and Schlag [RS10] study two different notions of
minimax-regret equilibrium, both coinciding with ours when players do not form beliefs about their
opponents. Halpern and Pass [HP12] propose the solution concept of iterated regret minimization
using beliefs.

Regret Minimizers vs. Utility Maximizers. Many empirical studies compare utility max-
imizers and regret minimizers, see for instance Chorus, Arentze and Timmermans [CAT09], and
Hensher, Greene and Chorus [HGC11]. Recently, Engelbrecht-Wiggans and Katok [EK07] and Filiz
and Ozbay [FO07] provide experimental evidence for regret in first- and second-price auctions. To
the best of our knowledge, we are the first to study players who use regret for refining their sets of
undominated strategies.

3 Classical and Knightian Basic Notions

Recall that, in an auction, the set of possible outcomes is Ω
def
= A× Rn≥0, where A denotes the set

of all possible allocations of the good(s). If (A,P ) ∈ Ω, we refer to A, A = (A0, A1, . . . , An), as
the realized allocation, to each Pi as the price charged to player i, to each Ai as the allocation of
player i, and to A0 as the unallocated good(s). A valuation θi of a player i is a function, from i’s
possible allocations to non-negative reals, mapping the empty allocation to 0. The set of all possible
valuations for a player i is denoted by Θi, and i’s true valuation by θ∗i . We assume quasi-linear
utility functions. That is, the utility function Ui of a player i maps a valuation θi and an outcome
ω = (A,P ) to Ui(θi, ω)

def
= θi(Ai)− Pi.

As already said, in a Knightian auction the only information that a player i has about θ∗i —and
the entire profile θ∗— consists of a subset Ki ⊂ Θi, the candidate (valuation) set, guaranteed to
contain θ∗i . A player i has no information or belief about θ∗−i or K−i of his opponents. The true
valuations of the players are uncorrelated.

By saying that K is a profile —respectively, a product— of candidate sets, we mean that
K = (K1, . . . ,Kn) —respectively, that K = K1 × · · · ×Kn.

Let us now clarify the specific auctions we consider.

δ-approximate Knightian Auctions. Recall that, in an (unrestricted) combinatorial auction,
there are n players and m distinct goods. The set of possible allocations A consists of all possible
partitions A of [m] into 1+n subsets, A = (A0, A1, . . . , An), where A0 is the (possibly empty) set of
unassigned goods and Ai is the (possibly empty) set of goods assigned to player i. For each player
i, Θi = {θi : 2[m] → R≥0 | θi(∅) = 0}.

In an (unrestricted) combinatorial Knightian auction, a player i’s candidate set Ki is a subset of

the above Θi. If S ⊂ [m], then we let Ki(S)
def
= {θi(S) | θi ∈ Ki}. We say that Ki is δ-approximate

if supKi(S)− inf Ki(S) ≤ δ for all S ⊆ [m].
A Knightian auction is δ-approximate if each candidate set Ki is δ-approximate.
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(Possibly Incomplete) Preferences. In a Knightian auction, a utility-maximizing player i with
candidate set Ki strictly prefers an outcome ω to an outcome ω′ if and only if the following two
conditions hold:

(1) Ui(θi, ω) ≥ Ui(θi, ω′) for all θi ∈ Ki and
(2) Ui(θ

′
i, ω) > Ui(θ

′
i, ω
′) for some θ′i ∈ Ki.

Social welfare. The social welfare of an allocation A, SW(A), is defined to be
∑

i θ
∗
i (Ai); and

the maximum social welfare, MSW, is defined to be maxA∈A SW(A). (That is, social welfare and
maximum social welfare continue to be defined relative to the players’ true valuations θ∗i , whether
or not the players know them exactly.)

More generally, the social welfare of an allocation A relative to a valuation profile θ, SW(θ,A),
is
∑

i θi(Ai); and the maximum social welfare relative to θ, MSW(θ), is maxA∈A SW(θ,A). Thus,
SW(A) = SW(θ∗, A) and MSW = MSW(θ∗).

The VCG mechanism. In our auctions, the VCG mechanism (with any tie-breaking rule) maps
a profile of valuations θ ∈ Θ1 × · · · ×Θn, to an outcome (A,P ), where

A ∈ arg maxA∈A SW(θ,A) and, for each player i, Pi = MSW(θ−i)−
∑

j 6=i θ(Ai).

General mechanisms and strategies. Every auction mechanism M considered in this paper
specifies, for each player i, a set Si. We interchangeably refer to each member of Si as a pure
strategy/action/report of i, and similarly, a member of ∆(Si) a mixed strategy/action/report of i.10

After each player i, simultaneously with his opponents, reports a strategy si in Si, M maps the
reported strategy profile s to an outcome M(s) ∈ Ω. If M is probabilistic, then M(s) ∈ ∆(Ω), and,

for each player i, Ui(θi,M(s))
def
= Eω∼M(s)[Ui(θi, ω)].

Note that Si = Θi in the VCG case, but in general the set Si is arbitrary.

Knightian undominated strategies. Given a mechanism M , a pure strategy si of a player i
with a candidate set Ki is (weakly) undominated,11 in symbols si ∈ UDi(Ki), if i does not have
another (possibly mixed) strategy σi such that

(1) ∀s−i ∀θi ∈ Ki EUi
(
θi,M(σi, s−i)

)
≥ Ui

(
θi,M(si, s−i)

)
, and

(2) ∃s−i ∃θi ∈ Ki EUi
(
θi,M(σi, s−i)

)
> Ui

(
θi,M(si, s−i)

)
.

If K is a product/profile of candidate sets, then UD(K)
def
= UD1(K1)× · · · × UDn(Kn).12

Knightian regret-minimizing strategies. Given a mechanism M , the (maximum) regret of a
pure strategy si of a player i with candidate set Ki is

Ri(Ki, si)
def
= max

θi∈Ki
max
s−i

(
max
s′i

Ui
(
θi,M(s′i, s−i)

)
− Ui

(
θi,M(si, s−i)

))
.

A pure strategy si is regret-minimizing among all pure strategies of a player i with a candidate
set Ki, in symbols si ∈ RMpure

i (Ki), if Ri(Ki, si) ≥ Ri(Ki, s
′
i) for all other pure strategies s′i of i.

We let RMpure(K)
def
= RMpure

1 (K1)× · · · × RMpure
n (Kn).

10Often, in pre-Bayesian settings, the notion of a strategy and that of an action are distinct. Indeed, a strategy si
of a player i maps the set of all possible types of i to the set of i’ possible actions/reports. But since strategies are
universally quantified in all relevant definitions of this paper, we have no need to separate (and for simplicity refrain
from separating) the notions of strategies and actions.

11This is not to be confused with the strong dominance that requires the inequality to be strict for all pairs (s−i, θi).
For this notion in the exact-valuation case, see for instance [FT91, LS08].

12As pointed out by Jackson [Jac92] in the exact-valuation case, the general notion of an undominated strategy is
more complex. However, for bounded mechanisms, the simpler notion above coincides with the general notion, even
in the Knightian setting. Since this class of mechanisms includes the VCG and all finite mechanisms, we adopt this
simpler notion for this paper.
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When allowing mixed strategies, the (expected) regret of a (possibly mixed) strategy σi of a
player i with candidate set Ki is

Ri(Ki, σi)
def
= max

θi∈Ki
max
s−i

(
max
s′i

Ui
(
θi,M(s′i, s−i)

)
− Esi∼σiUi

(
θi,M(si, s−i)

))
.

We similarly define RMmix
i (Ki) as the set of strategies of a player i that minimize regret among all

mixed strategies, and let RMmix(K)
def
= RMmix

1 (K1)× · · · × RMmix
n (Kn).

4 A Weaker Version of Theorem 1

It suffices to consider the case where there are n = 2 players, because all players other than players
1 and 2 can be made to report 0 on every subset of the goods, and thus not affect the choice of
outcome. We now sketch the proof for the following slightly weaker version of Theorem 1. (We
shall discuss in Appendix B the stronger statement of our theorem as well as a characterization of
a player’s undominated strategies.)

Theorem 1’. In a combinatorial Knightian auction with 2 players and m goods, consider the VCG
with any tie-breaking rule, then there exist products of δ-approximate candidate sets K = K1×K2

and profiles (v1, v2) ∈ UD(K), such that

(best-case θ) ∀θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m − 3)δ (4.1)

(worst-case θ) ∃θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m − 1)δ. (4.2)

Proof Sketch. Let π1, . . . , π2m−1 be any permutation of all non-empty subsets of [m] such that,

whenever j < k, πj 6⊇ πk.13 We set π2m
def
= π1, and denote by S the complement of a subset S: that

is, S
def
= [m] \ S.

We begin by choosing a highly-deviating strategy for player 1, and argue that it is undominated.
Specifically, choose arbitrarily a real number x larger than δ, and then choose a candidate set K1

and a strategy (i.e., a valuation) v1 as follows:

K1
def
=
{
θ1 ∈ Θ1

∣∣∣ ∀ non-empty S ⊆ [m], θ1(S) ∈ [x− δ/2, x+ δ/2]
}

and

v1(πi)
def
= x+ (i− 1)δ ∀i ∈ {1, . . . , 2m − 1} .

Note that v1 6∈ K1. (Indeed, v1(πi) ∈ K1(π1) only for i = 1.)
We now prove that the strategy v1 is undominated. More precisely,

Claim 4.1. v1 ∈ UD1(K1).

Proof. We proceed by contradiction. Assume towards contradiction that v1 is weakly dominated
by a strategy v′1 6= v1. (There are two cases to consider: v′1 is pure and v′i is mixed. For simplicity
we analyze only the first one.) Assume that v′1 is pure.

(There are two cases to consider: either v′i is a constant shift of vi or it is not. For brevity, we
analyze only the second, harder, case.) Assume that v′i is not a constant shift of vi. Then

∃j ∈ {1, . . . , 2m − 1} ∃∆ > 0 v1(πj+1)− v1(πj) > ∆ > max
T⊆πj+1

v′1(T )− max
T⊆πj

v′1(T ) . (4.3)

13In particular, we can order the subsets of [m] by increasing cardinality, and lexicographically within a given
cardinality: that is, when m = 3, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
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Else, that is, if for all i ∈ {1, . . . , 2m − 1}

v1(πi+1)− v1(πi) ≤ max
T⊆πi+1

v′1(T )−max
T⊆πi

v′1(T ),

then summing up all these 2m − 1 inequalities we get 0 ≤ 0; hence, all the inequalities are in fact
tight. So there must exist some constant c such that v1(πi) = v′1(πi) + c for i ∈ {1, . . . , 2m − 1},
which we have assumed not to be the case.

(There are now two more cases to consider: j 6∈ {2m − 2, 2m − 1} and j ∈ {2m − 2, 2m − 1}.
For brevity we analyze only the first, hard, one.) Assume that j 6∈ {2m − 2, 2m − 1}. In this case
neither πj nor πj+1 is empty.

We contradict the assumption that v′1 weakly dominates v1 by exhibiting a valuation θ1 ∈ K1

and a “witness” strategy v2 for player 2 such that

U1(θ1,VCG(v1, v2)) > U1(θ1,VCG(v′1, v2)) .

We define v2 as follows. Let H be a huge number (e.g., much higher than v1(π) and v′1(π) for
any subset π of the goods) and let v2(πj+1) = H − ∆, v2(πj) = H, and v2(T ) = 0 for all other
subsets T . (Here we rely on the combinatorial nature of the auction: we have complete freedom on
how to choose the valuation v2.)

We now argue that the allocation in the outcome VCG(v1, v2) is (πj+1, πj+1) and player 1’s price
is ∆. Indeed, because H was chosen to be sufficiently large, the only outcomes we should consider
are (T, πj+1) and (T ′, πj) where T ⊆ πj+1 and T ′ ⊆ πj . By construction πj+1 maximizes v1(T )
among all T ⊆ πj+1, and πj maximizes v1(T ) among all T ⊆ πj ; in particular, the only two possible
allocations are (πj , πj) and (πj+1, πj+1). Because v1(πj+1) − v1(πj) > ∆ = v2(πj) − v2(πj+1), the
outcome that is chosen is (πj+1, πj+1). As for the price: player 2 is allocated πj+1 but, if player 1
did not exist, player 2 would be allocated πj , and gain ∆ in utility; thus player 1’s price is indeed ∆.

Next, we argue that the allocation in the outcome VCG(v′1, v2) is (T ∗, πj), where T ∗ maximizes
v′1(T ) among all T ⊆ πj , and player 1’s price is 0. As before, because H was chosen to be sufficiently
large, the only outcomes we should consider are (T, πj+1) and (T ′, πj) where T ⊆ πj+1 and T ′ ⊆ πj .
This time by relying on the fact that

v2(πj)− v2(πj+1) = ∆ > max
T⊆πj+1

v′1(T )− max
T⊆πj

v′1(T )

we deduce that the outcome is in fact (T ∗, πj). As for the price: player 2 is allocated πj and, if
player 1 did not exist, player 2 would still be allocated πj ; thus player 1’s price is indeed 0.

We now define θ1 ∈ K1 as follows: θ1(πj+1) = x+ δ/2, θ1(πj) = x− δ/2, and θ1(π) is arbitrarily
chosen for all other subsets π. For our choices of θ1, v1, v

′
1 and v2 we have:

U1(θ1,VCG(v1, v2)) = (x+ δ/2)−∆

U1(θ1,VCG(v′1, v2)) = (x− δ/2)− 0 .

By (4.3) and the construction of v1, it is immediately seen that δ = v1(πj+1)−v1(πj) > ∆. Thus the
first utility is greater than the second one, contradicting the fact that v′1 weakly dominates v1.

Having constructed v1 ∈ UD1(K1), we continue the proof of Theorem 1’ by letting:

v2(S)
def
=

{
(2m − i− 1.5)δ if S = πi for some i ∈ {1, . . . , 2m − 2}
x+ (2m − 2.5)δ if S = [m]

,

K2
def
=
{
θ2 ∈ Θ2

∣∣∣ ∀i ∈ {1, . . . , 2m − 1}, θ2(πi) ∈
[
v2(πi), v2(πi) + δ

]}
.

Note that, by construction, v2 ∈ K2, which easily implies the following
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Claim 4.2. v2 ∈ UD2(K2). (For brevity we do not prove this implication.)

Having specified K1, v1,K2, and v2, all we have left is analyzing the social welfare performance.
Let us first compute the allocation of the outcome VCG(v1, v2). The only allocations to consider

are (π2m−1,∅), (∅, π2m−1), and (πi, πi), for some index i ∈ {1, . . . , 2m − 2}. (In principle, one may
also consider allocations where some goods remain unallocated. However, since v1 and v2 are
strictly monotone —that is, vj(S) < vj(T ) for all S ( T and all j ∈ {1, 2}— all goods must be
allocated in the outcome of VCG(v1, v2).)

Now we compare the social welfare relative to (v1, v2) for such allocations:

v1(π2m−1) + v2(∅) = (x+ (2m − 2)δ) + 0 = x+ (2m − 2)δ ,

v1(∅) + v2(π2m−1) = 0 + (x+ (2m − 2.5)δ) = x+ (2m − 2.5)δ , and

v1(πi) + v2(πi) = (x+ (i− 1)δ) + (2m − i− 1.5)δ = x+ (2m − 2.5)δ .

Thus, in the outcome VCG(v1, v2) the allocation is (π2m−1,∅). Hence, the social welfare is

SW
(
(θ1, θ2),VCG(v1, v2)

)
= θ1(π2m−1) .

On the other hand, the maximum social welfare is

MSW(θ1, θ2) ≥ θ2(π2m−1) .

Now notice that for all θ ∈ K, we have

MSW(θ)−SW
(
θ,VCG(v1, v2)

)
≥ θ2(π2m−1)−θ1(π2m−1) ≥ (x+(2m−2.5)δ)−(x+δ/2) = (2m−3)δ .

That is, (4.1) holds. To prove (4.2), we choose θ as follows:

θ1(πi)
def
= x− δ/2 ∀ i ∈ {1, . . . , 2m − 1} ,

θ2(πi)
def
= v2(πi) + δ ∀ i ∈ {1, . . . , 2m − 1} .

Now notice that

MSW(θ)−SW
(
θ,VCG(v1, v2)

)
≥ θ2(π2m−1)−θ1(π2m−1) = (x+(2m−1.5)δ)−(x−δ/2) = (2m−1)δ .

That is, (4.2) also holds. This concludes our proof sketch of the weaker version of Theorem 1. �

5 Proof of Theorem 2

Theorem 2. In a combinatorial Knightian auction with n players and m goods, let the VCG
mechanism break ties by preferring subsets with smaller cardinalities.14Then, for all δ, all products
K of δ-approximate candidate sets, all profiles θ ∈ K, and all profiles of strategies v ∈ RMpure(K),

SW(θ,VCG(v)) ≥ MSW(θ)− 2 min{m,n}δ .

Proof. We begin by noting that, because the VCG is dominant-strategy-truthful in the exact-
valuation model, the (maximum) regret of a pure strategy vi of a player i with candidate set Ki in
the VCG mechanism becomes

Ri(Ki, vi)
def
= max

θi∈Ki
max
v−i

(
max
v′i

Ui
(
θi,VCG(v′i, v−i)

)
− Ui

(
θi,VCG(vi, v−i)

))
= max

θi∈Ki
max
v−i

(
Ui
(
θi,VCG(θi, v−i)

)
− Ui

(
θi,VCG(vi, v−i)

))
,

14If giving subsets A or B ( A to player i provides the same social welfare, then the VCG will give B to player i.
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Moreover, by the very definition of the VCG, we have

Ui
(
θi,VCG(vi, v−i)

)
= SW

(
(θi, v−i),VCG(vi, v−i)

)
−MSW(v−i) .15

Therefore in the VCG case, we can further simplify the definition of regret as follows:

Ri(Ki, vi) = max
θi∈Ki

max
v−i

(
SW

(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(vi, v−i)

))
= max

θi∈Ki
max
v−i

(
MSW

(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

))
. (5.1)

Let us adopt a notation analogous to that of the proof in [CMZ14e]. Namely, for each player i,
each candidate set Ki ⊂ Θi, and each subset T ⊆ [m], we let

Ki(T )
def
= {θi(T )}θi∈Ki , K⊥i (T )

def
= inf Ki(T ),

K>i (T )
def
= supKi(T ), Kmid

i (T )
def
= (K⊥i (T ) +K>i (T ))/2 .

To prove Theorem 2, we rely on two intermediate claims. The first one identifies, for every
player i, a strategy vi with regret no larger than δ.

Claim 5.1. For every player i, let v∗i (T )
def
= Kmid

i (T ) for each T ⊆ [m]. Then Ri(Ki, v
∗
i ) ≤ δ.

Proof of Claim 5.1. According to the first equality of (5.1), it suffices to show that

∀θi ∈ Ki ∀v−i, SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(v∗i , v−i)

)
≤ δ .

Let ω1 = VCG(θi, v−i) and ω2 = VCG(v∗i , v−i).
Recall that, in a combinatorial auction, a valuation θi ∈ Θi of player i maps subsets of [m] to

R≥0. For convenience, we extend θi to map an outcome ω = (A,P ) to R≥0 as follows: θi(ω)
def
= θi(Ai).

Under this notation, we have v∗i (ω2) + v−i(ω2) ≥ v∗i (ω1) + v−i(ω1), because the VCG maximizes
social welfare relative to the strategy profile (v∗i , v−i). Using this inequality, we deduce that

SW
(
(θi, v−i),VCG(θi, v−i)

)
− SW

(
(θi, v−i),VCG(v∗i , v−i)

)
=
(
θi(ω1) + v−i(ω1)

)
−
(
θi(ω2) + v−i(ω2)

)
=
(
θi(ω1)− θi(ω2)

)
+
(
v−i(ω1)− v−i(ω2)

)
≤
(
θi(ω1)− θi(ω2)

)
+
(
v∗i (ω2)− v∗i (ω1)

)
.

Suppose player i gets subset T1 ⊆ [m] in outcome ω1, and subset T2 ⊆ [m] in outcome ω2. Then(
θi(ω1)− θi(ω2)

)
+
(
v∗i (ω2)− v∗i (ω1)

)
=
(
θi(T1)− v∗i (T1)

)
+
(
v∗i (T2)− θi(T2)

)
≤ K>i (T1)−Kmid

i (T1) +Kmid
i (T2)−K⊥i (T2)

≤ δ

2
+
δ

2
= δ .

Let us now prove another claim.

Claim 5.2. Let vi be any strategy of player i such that Ri(Ki, vi) ≤ δ. Then:

15This is because, suppose that the VCG mechanism picks an outcome ω = VCG(vi, v−i), allocating player i subset
Ai and others A−i. Then, i’s price is MSW(v−i)− v−i(A−i) in ω. This induces a total utility of θi(Ai) + v−i(A−i)−
MSW(v−i) = SW((θi, v−i), ω)−MSW(v−i).
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(a) for every T ⊆ [m]:

Kmid
i (T )− max

T ′⊆T
vi(T

′) ≤ δ − K>i (T )−K⊥i (T )

2
, and

(b) for every T ⊆ [m] such that vi(T ) > vi(T
′) for all T ′ ( T :

|vi(T )−Kmid
i (T )| ≤ δ − K>i (T )−K⊥i (T )

2
.

Proof. Since the case of T = ∅ is trivial, we assume below that T 6= ∅. We first prove part (a).
Suppose that (a) is not true. Then, there exists T such that

Kmid
i (T )− max

T ′⊆T
vi(T

′) > δ − K>i (T )−K⊥i (T )

2
. (5.2)

We contradict our assumption on vi by showing that Ri(Ki, vi) > δ.
To show Ri(Ki, vi) > δ, as per (5.1), we must find some v−i and some θi so that

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
> δ . (5.3)

Let j be an arbitrary player other than i. We choose θi ∈ Ki such that θi(T ) = K>i (T ),16 and v−i
as follows: for every S ⊆ [m]

vj(S)
def
=


H if S = T
H + ε+ maxT ′⊆T vi(T

′) if S = [m]
0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

Above, ε > 0 is some sufficiently small real number, and H is some huge real number (that is, H is
much bigger than vi(S) for any subset S).17 It then is easy to verify that the outcome VCG(vi, v−i)
allocates ∅ to player i, and [m] to player j. Therefore,

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(∅) + vj([m]) = H + ε+ max

T ′⊆T
vi(T

′) .

On the other hand, MSW(θi, v−i) ≥ θi(T ) + vj(T ) = K>i (T ) +H, and therefore

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
≥
(
K>i (T ) +H

)
−
(
H + ε+ max

T ′⊆T
vi(T

′)
)

= K>i (T )− ε− max
T ′⊆T

vi(T
′) =

K>i (T )−K⊥i (T )

2
+Kmid

i (T )− ε− max
T ′⊆T

vi(T
′) .

Finally, since Kmid
i (T )−maxT ′⊆T vi(T

′) is strictly greater than δ− K>i (T )−K⊥i (T )
2 , according to (5.2),

there exists some sufficiently small ε > 0 to make
K>i (T )−K⊥i (T )

2 +Kmid
i (T )−ε−maxT ′⊆T vi(T

′) > δ.
This proves (5.3) and concludes the proof of Claim 5.2a.

We now prove part Claim 5.2b.

16Here we have implicitly assumed that K>
i (T ) = supKi(T ) = maxKi(T ), and thus we can pick θi ∈ Ki so that

θi(T ) = K>
i (T ). If this is not the case, one can construct an infinite sequence θ

(1)
i , θ

(2)
i , · · · so that θi(T ) approaches

to K>
i (T ), and the rest of the proof remains unchanged.

17Notice that when T = [m] we have T = ∅ and one cannot assign vj(∅) to be a nonzero number. In that case we
can choose H = 0, and the rest of the proof still goes through.
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One side of Claim 5.2b is easy: that is, vi(T ) −Kmid
i (T ) ≥ −(δ − K>i (T )−K⊥i (T )

2 ). Indeed, this
inequality follows from maxT ′⊆T vi(T

′) = vi(T ) and Claim 5.2a.

To show the other side, that is, vi(T ) − Kmid
i (T ) ≤ δ − K>i (T )−K⊥i (T )

2 , we again proceed by
contradiction. Suppose there is some T such that

vi(T )−Kmid
i (T ) > δ − K>i (T )−K⊥i (T )

2
. (5.4)

We contradict our assumption on vi by showing that Ri(Ki, vi) > δ. Similarly to case (a), we need
to find some v−i and some θi so that inequality (5.3) holds.

Let j be an arbitrary player other than i. This time, we choose θi ∈ Ki such that θi(T ) =
K⊥i (T ),16 and choose v−i as follows: for every S ⊆ [m]

vj(S) =


H if S = T
H − ε+ vi(T ) if S = [m]
0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

Again, ε > 0 is sufficiently small, and H is huge.17 It then is easy to verify that the outcome
VCG(vi, v−i) allocates T to player i and T to player j. Therefore,

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(T ) + vj(T ) = K⊥i (T ) +H .

On the other hand, MSW(θi, v−i) ≥ θi(∅) + vj([m]) = H − ε+ vi(T ). Therefore,

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
≥ (H − ε+ vi(T ))− (K⊥i (T ) +H)

= vi(T )−Kmid
i (T ) +

K>i (T )−K⊥i (T )

2
− ε .

Finally, since vi(T ) − Kmid
i (T ) is strictly greater than δ − K>i (T )−K⊥i (T )

2 according to (5.4), there

exists some sufficiently small ε > 0 to make vi(T )−Kmid
i (T ) +

K>i (T )−K⊥i (T )
2 − ε > δ. This proves

(5.3) and concludes the proof of Claim 5.2b.
In sum, Claim 5.2 holds.

Now we return to the proof of Theorem 2. Let v = (v1, . . . , vn) ∈ RMpure(K) be a regret-
minimizing pure strategy profile, and let θ ∈ K be a valuation profile.

For every player i, the strategy v∗i (i.e., the one reporting the ‘middle points’) has a regret at
most δ, owing to Claim 5.1. Since vi minimizes regret among all his strategies, we immediately
have Ri(Ki, vi) ≤ Ri(v∗i ,Ki) ≤ δ. This shows that vi satisfies the initial hypothesis of Claim 5.2.

Now, letting (A0, A1, . . . , An) be the allocation in the outcome VCG(v1, . . . , vn), we immediately
have vi(Ai) ≥ vi(T

′) for any T ′ ( Ai by the definition of the VCG. Furthermore, by our choice
of the tie-breaking rule, this inequality must be strict: that is, vi(Ai) > vi(T

′) for any T ′ ( Ai.
Therefore, letting T = Ai, T satisfies the hypothesis in Claim 5.2b. Thus, we conclude that

∀i ∈ [n], |vi(Ai)−Kmid
i (Ai)| ≤ δ −

K>i (Ai)−K⊥i (Ai)

2
≤ δ − |θi(Ai)−Kmid

i (Ai)|

=⇒ |vi(Ai)− θi(Ai)| ≤ δ . (5.5)

Notice that, if Ai = ∅, then vi(∅) = θi(∅) = 0.
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Next, letting (B0, B1, . . . , Bn) be the allocation that maximizes the social welfare under θ, we
have

n∑
i=1

vi(Ai) ≥
n∑
i=1

max
T ′⊆Bi

vi(T
′) (5.6)

because the VCG maximizes social welfare relative to v = (v1, . . . , vn). Moreover, according to
Claim 5.2a we have

∀i ∈ [n], Kmid
i (Bi)− max

T ′⊆Bi
vi(T

′) ≤ δ − K>i (Bi)−K⊥i (Bi)

2
≤ δ − |θi(Bi)−Kmid

i (Bi)|

=⇒ θi(Bi)− max
T ′⊆Bi

vi(T
′) ≤ δ . (5.7)

Also notice that, if Bi = ∅, then θi(Bi) = maxT ′⊆Bi vi(T
′) = 0.

We are now ready to compute the social welfare guarantee.

SW(θ,VCG(v)) =
∑n

i=1 θi(Ai) ≥
∑n

i=1 vi(Ai)−
∑

i∈[n],Ai 6=∅ δ (using (5.5))

≥
n∑
i=1

max
T ′⊆Bi

vi(T
′)−

∑
i∈[n],Ai 6=∅

δ (using (5.6))

≥
∑n

i=1 θi(Bi)−
∑

i∈[n],Ai 6=∅ δ −
∑

i∈[n],Bi 6=∅ δ (using (5.7))

≥ MSW(θ)− 2 min{n,m}δ .

This concludes the proof of Theorem 2. �
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Appendix

A Our Rationality Bridge Lemma

We prove the Rationality Bridge Lemma for the case envisaged in decision theory: that is, for
a single player against Nature. Indeed, the generalization to n-player (strategic or pre-Bayesian)
games follows as a simple corollary. This is so because, in the definitions of dominance and regret,
the players’ strategies are universally quantified (and so is each θi in Ki, if player i is Knightian),
and thus can be treated as Nature’s strategies.

More precisely, let S be a compact set of strategies of the player, and T a compact set of
states of Nature.18 We denote by U the (continuous) utility function of the player, where U(s, t)
is the utility under strategy s ∈ S when Nature’s state is t ∈ T . Regret-minimizing strategies and
undominated strategies are defined as follows:

• Given a menu S ⊆ S of strategies, the player’s (maximum) regret for a strategy s ∈ S, RS(s) is
the maximum difference, taken over all possible states of Nature t ∈ T , between the utility the
player gets by playing s and the utility he could have gotten by best responding to t: that is,
RS(s)

def
= maxt∈T

(
maxs∗∈S U(s∗, t)− U(s, t)

)
.

The set of regret-minimizing strategies with respect to S is RM(S)
def
= arg mins∈S RS(s).

• Given two strategies s, s′ ∈ S, s′ weakly dominates s, s′ � s, if

∀t ∈ T, U(s′, t) ≥ U(s, t) and ∃t ∈ T, U(s′, t) > U(s, t) .

Given a menu S ⊆ S, the player’s undominated strategies consist of those that are not weakly
dominated by any weakly undominated strategy.19 That is,

UD(S)
def
= S \ {s ∈ S : ∃s′ ∈ S s.t. (s′ � s) ∧ (@s′′ ∈ S, s′′ � s′)}
= {s ∈ S : @s′ ∈ S s.t. (s′ � s) ∧ (@s′′ ∈ S, s′′ � s′)}

We now state two simple facts that follow easily from the above definitions:

Fact A.1. For every menu S ⊆ S,
(a) if s ≺ s′ for some s and s′ in S, then RS(s) ≥ RS(s′), and
(b) the regrets of a strategy s ∈ UD(S) with respect to S and UD(S) are the same, namely:20

RS(s) = max
t∈T

(
max
s∗∈S

U(s∗, t)− U(s, t)
)

= max
t∈T

(
max

s∗∈UD(S)
U(s∗, t)− U(s, t)

)
= RUD(S)(s) .

18For instance, in the Knightian setting of the VCG, when analyzing a player i, S consists of all possible bidding
strategies of player i, and T is the cartesian product of (1) all possible bidding strategy sub-profiles of i’s opponents
and (2) all possible true valuations of player i in his set Ki.

Both S and T may be infinite, and S may be convex in order to allow arbitrary mixed strategies to be considered.
19In many cases of interest (e.g., when the set of pure strategies is finite, or when the mechanism is the VCG),

weakly undominated strategies coincide with undominated ones, and this is why we directly adopted that simpler
notion in the main body of this paper for Knightian auctions. As argued by Jackson [Jac92], however, the above
level of precision is required when handling the general case. In particular, it may happen that every pure strategy
is weakly dominated by another one in an infinite chain. In such a case, all strategies are undominated but weakly
dominated.

20The equality in the middle is because any strategy s∗ ∈ S \ UD(S) must be weakly dominated by some s∗∗ ∈ S,
giving at least as good utilities as s∗ for any t ∈ T . Therefore, such choices of s∗∗ can be ignored in the inner max.
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Now let us prove the following

Claim A.2. For every menu S ⊆ S, UD(RM(S)) = RM(UD(S)) = RM(S) ∩ UD(S).

Proof. We divide the proof into six steps.

1. RM(UD(S)) ⊆ RM(S).

For every s ∈ RM(UD(S)), we show that s ∈ RM(S) by proving that s has minimum regret
among all strategies in S. Indeed:

• For any other strategy s′ ∈ UD(S), it holds that RUD(S)(s) ≤ RUD(S)(s
′). From Fact A.1b,

we deduce that RS(s) ≤ RS(s′).

• For any other strategy s′ ∈ S \ UD(S), it holds that s′ ≺ s′′ for some s′′ ∈ UD(S) and
RS(s) ≤ RS(s′′). From Fact A.1a, we deduce that RS(s) ≤ RS(s′′) ≤ RS(s′).

2. RM(UD(S)) ⊆ UD(RM(S)).

Because RM(UD(S)) ⊆ RM(S), if there is some s ∈ RM(UD(S)) such that s 6∈ UD(RM(S)), then
s ≺ s′, for some other strategy s′ ∈ RM(S) that is not weakly dominated by any other strategy
in RM(S), by the definition of UD.

Next, we show that s′ cannot be weakly dominated by any strategy in S as well. Suppose that
s′ ≺ s′′ where s′′ ∈ S. Then, as we have just argued, s′′ 6∈ RM(S). Using Fact A.1a however,
we have RS(s′) ≥ RS(s′′), which implies that s′′ ∈ RM(S) since s′ ∈ RM(S). This contradicts
s′′ 6∈ RM(S).

In sum, we have shown that s is weakly dominated by s′ ∈ S, and that s′ is not weakly dominated
by any strategy in S. This contradicts the fact that s ∈ UD(S).

3. UD(RM(S)) ⊆ UD(S).

Suppose that there exists some s ∈ UD(RM(S)) that is not in UD(S). By the definition of
UD(S), the strategy s must be weakly dominated by some s′ ∈ S. In addition, s′ is not weakly
dominated by any other strategy in S. There are two cases to consider.

• The first case is when s′ ∈ RM(S). This case is impossible because s ∈ UD(RM(S)) implies
that if s is weakly dominated by s′ ∈ RM(S), then s′ must also be weakly dominated,
contradicting the fact that s′ cannot be weakly dominated by any strategy in S.

• The second case is when s′ 6∈ RM(S). Since s ≺ s′, by Fact A.1a, we have RS(s) ≥ RS(s′).
However, because s ∈ UD(RM(S)) implies that s ∈ RM(S), s′ must be a regret minimizer
with respect to S, contradicting the fact that s′ 6∈ RM(S).

4. UD(RM(S)) ⊆ RM(UD(S)).

Having just proved that UD(RM(S)) ⊆ UD(S), consider any strategy s ∈ UD(RM(S)), and
suppose that s 6∈ RM(UD(S)). Then there exists some s′ ∈ UD(S) satisfying RUD(S)(s) >
RUD(S)(s

′). This implies, by Fact A.1b, that RS(s) > RS(s′), contradicting the fact that s ∈
RM(S).

5. RM(UD(S)) ⊆ RM(S) ∩ UD(S).

This step holds because RM(UD(S)) = UD(RM(S)) ⊆ RM(S) and RM(UD(S)) ⊆ UD(S).

(The first equality follows from Steps 2 and 4, and the two inclusions are obvious.)
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6. RM(S) ∩ UD(S) ⊆ RM(UD(S)).

Take any strategy s ∈ RM(S)∩UD(S), and suppose that s 6∈ RM(UD(S)). Then there exists some
s′ ∈ UD(S) satisfying RUD(S)(s) > RUD(S)(s

′). This implies, by Fact A.1b, that RS(s) > RS(s′),
contradicting the fact that s ∈ RM(S).

Finally, the claim above easily implies the desired lemma:

Lemma 1 (Rationality Bridge Lemma). From any menu S ⊆ S, a player who applies, in arbitrary
order, i times the operator RM and at least once the operator UD, always obtains the same set of
surviving strategies:

RMi(S) ∩ UD(S) .

A.1 Pure vs. Mixed Strategies

So far we have been ambiguous, when discussing undominated strategies and regret-minimizing
ones, about whether or not mixed strategies are allowed.

When only pure strategies are allowed, a utility maximizer plays a pure undominated strategy,
and considers only pure strategies for the notion of dominance. On the other hand, a regret
minimizer plays a pure strategy whose regret is minimal among his pure strategies. (For instance,
Theorem 2, in the main body of this paper, is stated for pure strategies, and so is our Rationality
Bridging Lemma.)

When mixed strategies are allowed, the definitions of UD and RM require more careful attention.
For a regret minimizing player, the only change needed is to allow him to choose a mixed strategy
that minimizes his expected regret among all his mixed strategies (see, for instance, [HB04, HP12]).
Note that it is easy to construct examples in which a mixed strategy yields strictly smaller regret
than any pure strategy.

It is important to realize, however, that if we allow regret minimizers to consider mixed strate-
gies, we should also allow utility maximizers to consider mixed strategies. For instance, the Ratio-
nality Bridging Lemma would have difficulty equating a set of pure strategies and a set of mixed
ones.

When mixed strategies are allowed, to determine whether a strategy s is weakly dominated by
another strategy s′, there are only two interesting cases to consider: namely, (1) s is pure and s′

is mixed; and (2) both s and s′ are mixed. Traditionally, the most attention has been devoted to
the first case, but the second has been studied too (see for instance [CS05, RS10]). Clearly, UD
can be defined in both cases, and yields a more refined set of strategies in the second case.21 It is
under this more refined case that the Rationality Bridging Lemma holds. Indeed, the just given
proof of the Rationality Bridge Lemma also works when mixed strategies are allowed. This follows
immediately if we explicitly define S to include all possibly mixed strategies of the player.

In a sense, we have nothing to lose and something to gain by adopting a more flexible definition.
After all, the ‘right’ definitions are those yielding the ‘right’ theorems.

21Let UDpure be the set of (pure) undominated strategies in the first case, and UD be the set of (possibly mixed)
undominated strategies in the second case. Then, UD is a more ‘refined’ notion of undominated strategies than
UDpure, because UDpure ⊆ UD ⊆ ∆(UDpure), i.e., UDpure coincides with the support of UD. For this reason, there is no
difference in choosing between the two notions in most of the literature (see [CS05, footnote 2]).
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B Theorem 1: How to Obtain a Stronger Result and a Charac-
terization

Payoff equivalence. Two strategies si and s′i are payoff-equivalent for player i if for any strategy
sub-profile s−i of i’s opponents and any θi ∈ Ki, player i’s utilities are the same when reporting si
or s′i. That is, there is no difference for i to report si or s′i. Given a set of strategies Si for player

i, we denote by Ŝi the set that also includes every strategy of i that is payoff-equivalent to some
strategy in Si. We will use this notation to simplify our statements of the results.

Remark. Two payoff-equivalent strategies of a player i may ultimately yield different outcomes,
but they are effectively the same from i’s point of view. Thus a solution concept cannot be
meaningful unless, when it includes a strategy profile s, it also includes all strategy profiles s′ such
that si and s′i are payoff equivalent for a player i.

We formally state Theorem 1 as follows.

Theorem 1. In any unrestricted combinatorial auction with n (δ-approximate Knightian) players
and m goods:

(a) For any player i with candidate set Ki, UDi(Ki) = V̂(Ki).
(The set of strategies V(Ki) is formally defined in Definition C.2, and geometrically de-
scribed in Appendix B.1 below.)

(b) Even if there are only two players, there exist products of δ-approximate candidate sets
K = K1 ×K2 and profiles (v1, v2) ∈ UD(K), such that

(best-case θ) ∀θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 5)δ

(worst-case θ) ∃θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 3)δ.

(In Appendix C, we prove one direction of Theorem 1a: namely, UDi(Ki) ⊇ V̂(Ki). We shall

prove UDi(Ki) ⊆ V̂(Ki) in the full version of the paper. In Appendix D we show how to derive
Theorem 1b from Theorem 1a.)

From sketch to proof. Let us say a few words about how the sketched proof in Section 4 can be
extended to a full and slightly stronger proof. The first simplification we have made is to suppose

that v′1 is a pure strategy. If instead v′1 is a mixed strategy, say it equals
∑

j p
(j)v

(j)
1 for

∑
j p

(j) = 1

where v
(j)
1 each is a pure strategy, then the first step is to distinguish between the following three

cases (at least one of them always holds):

(a) ∃ j ∈ {1, . . . , 2m − 1}, v1(Sj+1)− v1(Sj) > min
j

{
max
T⊆Sj+1

v
(j)
1 (T )− max

T⊆Sj
v
(j)
1 (T )

}
(b) v1(S1) > min

j

{
max
T⊆S1

v
(j)
1 (T )

}
(c) v1(S1) < max

j

{
max
T⊆S1

v
(j)
1 (T )

}
In the proof sketch above, we analyzed case (a) when v′1 happens to be a pure strategy. However,
in a full proof, one has to analyze all three cases, without assuming that v′1 is pure. The analysis
of each of these cases, is significantly more involved in this more general setting.

Furthermore, when analyzing case (a), we distinguished between the case j 6∈ {2m − 2, 2m − 1}
or j ∈ {2m − 2, 2m − 1} and only analyzed the former. In the latter, the choices of “witnesses”
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θ1 ∈ K1 and v2 in order to create the contradiction U1(θ1,VCG(v1, v2)) > U1(θ1,VCG(v′1, v2)) are
different. Similarly, both (b) and (c) each have a witness specially crafted for it.

Only when all of (a), (b), and (c) are fully analyzed, we can really conclude that v1 ∈ UD1(K1).
Finally, even if we expect v2 ∈ UD2(K2) to be true, because v2 ∈ K2 (and thus v2 is not a

deviating strategy), actually proving that this is the case essentially amounts to an analysis that
is not much more simple than the one required to show that the highly-deviating strategy v1 is in
UD1(K1). In our full proof in Appendix D, we actually pick v2 and K2 more carefully (to be also
highly-deviating), and doing so induces a slightly stronger result with the following social welfare
upper bound:

SW
(
(θ1, θ2),VCG(v1, v2)

)
≤ MSW(θ1, θ2)− 2(2m − 2)δ .

B.1 Geometric Description of V(Ki)

In this section, we just wish to provide an intuitive description of the set V(Ki), which will be
formally defined in Definition C.2.

The case of two goods. We first describe V(Ki) in the simpler case where there are only two
goods on sale (i.e., m = 2). In this case, the non-empty subsets of the goods are {1}, {2}, {1, 2}; in
particular, a valuation is a point (x, y, z) in three dimensions, and we can draw it. For the purpose
of drawing, we fix the choice Ki({1}) = [6, 9], Ki({2}) = [8, 11] and Ki({1, 2}) = [10, 13].

We begin with two simple observations:

(a) any strategy that “bids below minKi(S) at every coordinate S ⊆ [m]” is dominated; and

(b) any strategy that “bids above maxKi(S) at every coordinate S ⊆ [m]” is dominated.

Property (a) means that a strategy vi such that, for every S, vi(S) is less than minKi(S)
cannot be in V(Ki). That is, V(Ki) does not share any strategies with the following cuboid (see
Figure 1a):

Cuboid1
def
=

(x, y, z)

∣∣∣∣∣∣
x < minKi({1})
y < minKi({2})
z < minKi({1, 2})

 .

Similarly, property (b) means that a strategy vi such that, for every S, vi(S) is greater than
maxKi(S) cannot be in V(Ki). That is, V(Ki) does not share any strategies with the following
cuboid (see Figure 1b):

Cuboid2
def
=

(x, y, z)

∣∣∣∣∣∣
x > maxKi({1})
y > maxKi({2})
z > maxKi({1, 2})

 .

Provided that a strategy vi is neither in Cuboid1 nor Cuboid2 (i.e., there are S′ and S′′ for
which vi(S

′) > minKi(S
′) and vi(S

′′) < maxKi(S
′′)), there can be “many ways” in which vi could

be in V(Ki). To express this, we need an additional definition. For valuation sets (S1, S2, S3),
define

Cyl(S1, S2, S3)
def
=

(x, y, z)

∣∣∣∣∣∣
x− y ≥ minS1 −maxS2
y − z ≥ minS2 −maxS3
z − x ≥ minS3 −maxS1

 .

Note that Cyl(S1, S2, S3) is a triangular cylinder defined by three halfspaces and its axis lies on
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the x = y = z line. For a candidate set Ki, define (see Figure 1c and 1d)

Cyl1
def
= Cyl(Ki({1}),Ki({2}),Ki({1, 2}))

Cyl2
def
= “ Cyl(Ki({2}),Ki({1}),Ki({1, 2}))

after the transformation (x, y, z) 7→ (y, x, z)”.

Then, disregarding set boundaries, our definition of V(Ki) for m = 2 is as follows (see Figure 1e):

V(Ki) = Cyl1 ∪Cyl2 −Cuboid1 −Cuboid2 .
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(e) V(Ki) (f)

Figure 1: Here (f) is a PDF animated rotation (if viewed under Acrobat Reader), and can also be
found at http://people.csail.mit.edu/zeyuan/knightian/vcg.gif.

The general case. In the general case (when m need not equal 2), we can analogously define
Cuboid1 and Cuboid2. What becomes more complicated is the “cylinder structure” of V(Ki).
Let us explain.

When m = 2, there are two cylinders in the definition of V(Ki) because there are two
“proper” ways of ordering all non-empty subsets of the two goods: that is ({1}, {2}, {1, 2}) and
({2}, {1}, {1, 2}). Thus, when m = 2, V(Ki) is the union of the two cylinders respectively obtained
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by indexing the three sets Ki({1}), Ki({2}), and Ki({1, 2}) using the two proper orderings (and
minus the two cuboids).

In the general case, there are more such “proper” orderings. Concretely, we say that a relabeling
π of all the non-empty subsets of [m] is proper if j < k implies that π(Sj) 6⊇ π(Sk). (Note that
π(S2m−1) = [m] is always the set of all goods.)

Analogously to the m = 2 case, for each vector of sets S = (S1, . . . , S2m−1), we define the corre-
sponding fundamental cylinder Cyl(S). Then we consider the union of all fundamental cylinders
corresponding to all vectors of sets obtained by properly relabeling Ki = (Ki(S1), . . . ,Ki(S2m−1)).
In sum, the description of V(Ki) in the general case is:

V(Ki) =
⋃

proper
π

Cyl(π(Ki))−Cuboid1 −Cuboid2 .

For more details see Appendix C.

C Proof of One Side of Theorem 1a

We introduce some notions before we proceed with the formal statement of the theorem. A labeling
of all non-empty subsets of [m] is a vector π = (π1, . . . , π2m−1), where the πi’s are the 2m − 1
distinct non-empty subsets of [m].

Definition C.1. A labeling π of all non-empty subsets of [m] is proper if j < k ⇒ πj 6⊇ πk.22

To make the result of our characterization clean, we assume that the candidate set Ki for the
considered player i, is a cartesian product of intervals. That is, Ki(T ) = {θi(T )}θi∈Ki = [aT , bT ] for
some 0 ≤ aT ≤ bT . We denote by K⊥i (T ) = aT the minimum point in this interval and K>i (T ) = bT
the maximum point in this set.

Definition C.2. For any player i with candidate set Ki, the set V(Ki) is the set of all strategies
vi satisfying the following two conditions:

1. at least one coordinate of vi is below (resp., above) the corresponding upper (resp., lower)
bound of Ki:

∃ S′ ⊆ [m], vi(S
′) ≤ K>i (S′) , (C.1)

∃ S′′ ⊆ [m], vi(S
′′) ≥ K⊥i (S′′) ; (C.2)

2. there exists a proper labeling π of all non-empty subsets of [m] such that, letting π2m
def
= π1,

∀ j ∈ {1, . . . , 2m − 1} , vi(πj)− vi(πj+1) ≥ K⊥i (πj)−K>i (πj+1) . (C.3)

In this section we prove the harder case of Theorem 1a: its “if” side. For this side, it suffices to
show that if a strategy vi is in V(Ki) then it is UDi(Ki). In fact, our proof assumes for simplicity
that both vi and Ki satisfy some weak monotonicity conditions. We now proceed to formally state
what we are going to prove, in Lemma C.3 below.

22For instance, when m is equal to 3 such a permutation could be ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}), or
({1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}), and there are plenty more such permutations.
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Lemma C.3 (one side of Theorem 1a). In the VCG mechanism for combinatorial auctions, no
matter how ties are broken, for each player i having a weakly-monotone candidate set Ki the
following holds.23If vi is a strictly monotone strategy of i in V(Ki), then vi ∈ UDi(Ki).

We fix a player i throughout, so we drop the subscript i everywhere. In fact, we can assume
without loss of generality that i = 1, and that there is only another player, player 2, because all
the other players can be chosen to report 0 and will thus not affect the analysis.

Assume by contradiction that a strategy v satisfying the hypothesis of the lemma is weakly
dominated by some possibly mixed strategy {pj , v(j)}j , where the probabilities pj sum up to 1 and
v(j) 6= v for all j. Our goal is to construct a “witness bid” w : (2[m] − ∅) → R≥0 for the second
player and a “witness true valuation” θ ∈ K for the first player such that, if U is the utility function
for the first player, then

U
(
θ,VCG(v, w)

)
>
∑
j

pjU
(
θ,VCG(v(j), w)

)
. (C.4)

This will contradict the fact that the mixed strategy {pj , v(j)}j weakly dominates v. The construc-
tion of w and θ will be through a case analysis.

Notation.

• We call the player reporting v the first player, and the player reporting w the second player.

• We say that the allocation of VCG(v, w) is (S, T ) if the first player receives S ⊆ [m] and the
second player receives T ⊆ [m].

• We use SW[(S, T )]
def
= v(S) + w(T ) to denote the “apparent social welfare” of the allocation

(S, T ) (i.e., the social welfare when assuming that both players have the reported strategies
(v, w) as their true valuations).

• Since the VCG mechanism maximizes social welfare relative to the reported strategies, we have
that SW[VCG(v, w)] = max(S,T ){v(S) +w(T )} where the maximization is over all S, T ⊆ [m]
with S ∩ T = ∅.

• For notational simplicity, given a strategy v, we define its monotonizer ṽ by ṽ(S)
def
= maxT⊆S v(T ).

Next, among the following inequalities, at least one cannot hold:
v(πi+1)− v(πi) ≤ minj

{
ṽ(j)(πi+1)− ṽ(j)(πi)

}
, ∀ i ∈ {1, . . . , 2m − 1}

v(S′) ≤ minj

{
ṽ(j)(S′)

}
v(S′′) ≥ maxj

{
ṽ(j)(S′′)

} (C.5)

where π is any proper labeling guaranteed by the hypothesis of the lemma. Indeed, we now show
that if all inequalities above hold, there must be a contradiction.

From the first inequality we deduce that, for each i and j, v(πi+1)−v(πi) ≤ ṽ(j)(πi+1)− ṽ(j)(πi);
for i ∈ {1, . . . , 2m− 1}, all these sum up to 0 ≤ 0. In particular, all such inequalities must be tight,
so for each j, v(j) must be the same as v, up to a constant shift. In other words,

∀S ⊆ [m] with S 6= ∅ , v(j)(S) = v(S) + c(j) for some constant c(j) .

23A candidate set Ki is weakly monotone if K⊥
i and K>

i are weakly monotone: for all S, T ⊆ [m] with ∅ ( S ⊆ T ,
K⊥
i (S) ≤ K⊥

i (T ) and K>
i (S) ≤ K>

i (T ). A strategy is strictly monotone if for all S, T ⊆ [m] with ∅ ( S ⊆ T it holds
that vi(S) < vi(T )).
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Substituting the above into the second and third inequality in (C.5), we deduce that 0 ≤ minj c
(j)

and 0 ≥ maxj c
(j), and therefore the c(j) must all be 0, contradicting the fact that v(j) 6= v.

Therefore, one of the three kinds of inequalities in (C.5) cannot hold; we thus have three cases,
depending on which kind of inequality does not hold. We now show that, for each possible case
(respectively discussed in Appendix C.1, Appendix C.2, and Appendix C.3), (C.4) holds, and
therefore the strategy v cannot be weakly dominated.

C.1 Case 1

Suppose that the first inequality of (C.5) does not hold for some i. For notational simplicity, assume
that it does not hold for i = 1, i.e.,

v(π2)− v(π1) > min
j

{
ṽ(j)(π2)− ṽ(j)(π1)

}
.

We let J = arg minj

{
ṽ(j)(π2) − ṽ(j)(π1)

}
be the set of minimizers, and let j∗ ∈ J be one of

them. We can always choose some ∆ such that

v(π2)− v(π1) > ∆ > ṽ(j∗)(π2)− ṽ(j∗)(π1) , (C.6)

and for every j 6∈ J :

ṽ(j)(π2)− ṽ(j)(π1) > ∆ . (C.7)

Now, we set the witness strategy of the other player to be w(π1) = H + ∆, w(π2) = H and
w(S) = 0 anywhere else. Here H is some very large value. We will deal with the case when π1 = ∅
or π2 = ∅ later, since we cannot set the second player to have non-zero valuation on an empty set.
We claim that:

Claim C.4. If π1 6= ∅ and π2 6= ∅:

a. The allocation of VCG(v, w) is ω = (π2, π2).

b. For all j∗ ∈ J , the allocation of VCG(v(j
∗), w) is ω = (T, π1) for some T ∈ arg maxT⊆π1 v

(j∗)(T )
(or a probabilistic distribution over them in case of ties).

c. For all j 6∈ J , the allocation of VCG(v(j), w) is ω = (T, π2) for some T ∈ arg maxT⊆π2 v
(j)(T )

(or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T ) of the VCG mechanism when the second player reports
w, if T 6∈ {π1, π2}, then SW[(S, T )] does not contain the big term H and is thus smaller than any
SW[ω] in all three cases. Therefore, we only need to consider outcomes of the form (S, π1) and
(S, π2).

a. In this case, SW[ω] = v(π2) + H. If the allocation is of the form (S, π2), by the strict
monotonicity of v, (π2, π2) = ω must be the allocation with the best social welfare. If the
allocation is of the form (S, π1), similarly, (π1, π1) must be the allocation with the best social
welfare, however, in this case v(π1) + w(π1) = v(π1) + H + ∆ < v(π2) + H = SW[ω], using
(C.6). In sum, ω = (π2, π2) must be the allocation of the VCG mechanism.

b. In this case, SW[ω] = ṽ(j∗)(π1) + H + ∆. For the allocation of (S, π1), S must be a subset
of π1 and therefore S ∈ arg maxT⊆π1 v

(j∗)(T ) as desired, since the VCG mechanism is out-
putting an allocation with the maximum reported social welfare. For the allocation of (S, π2),

SW[(S, π2)] ≤ ṽ(j∗)(π2) + H < ṽ(j∗)(π1) + H + ∆ = SW[ω] (using (C.6)) is worse than the
choice of ω. So the allocation must be of the desired form.
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c. In this case, SW[ω] = ṽ(j)(π2) +H. For the allocation of (S, π1), we have that SW[(S, π1)] ≤
ṽ(j)(π1) + H + ∆ < ṽ(j)(π2) + H = SW[ω] (using (C.7)) is worse than the choice of ω. For
the allocation of (S, π2), S must be a subset of π2 and therefore S ∈ arg maxT⊆π2 v

(j)(T ) as
desired, since the VCG mechanism is outputting an allocation with the maximum reported
social welfare. In sum, the allocation must be of the desired form.

Claim C.5. When π1 = ∅ or π2 = ∅, Claim C.4 only requires the following small changes:

a. When π1 = ∅ (i.e., π1 = [m]), at any time (T, π1) is a possible allocation declared in
Claim C.4, (T,R) for R ⊆ T is now also possible.24

b. When π2 = ∅ (i.e., π2 = [m]), at any time (T, π2) is a possible allocation declared in
Claim C.4, (T,R) for R ⊆ T is now also possible.25

Proof.

a. This is because, due to the (strict) monotonicity of v we have v(π1) > v(π2) and thus (C.6)
tells us that ∆ < 0. Instead of choosing some sufficiently large H, we can choose H = −∆. It
will make sure that w(∅) = w(π1) = 0 while w(π2) = −∆ > 0. The only place that we used
H being sufficiently large, is where we declare that the only possible candidate allocation for
VCG(·, w) is of the form (S, π1) or (S, π2). This is no longer true as we have to also consider
(S,R) for R 6= π1 or π2. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] = SW[(S, π1)].
This means, allocation (S,R) will be possible only if (S, π1) is possible.

b. This is because, due to the weak monotonicity of ṽ(j∗) we have ṽ(j∗)(π2) ≥ ṽ(j∗)(π1) and thus
(C.6) tells us that ∆ > 0. Instead of choosing some sufficiently large H, we can choose H = 0.
It will make sure that w(∅) = w(π2) = 0 while w(π1) = ∆ > 0. The only place that we used
H being sufficiently large, is where we declare that the only possible candidate allocation for
VCG(·, w) is of the form (S, π1) or (S, π2). This is no longer true as we have to also consider
(S,R) for R 6= π1 or π2. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] = SW[(S, π2)].
This means, allocation (S,R) will be possible only if (S, π2) is possible.

Now, we have some knowledge about what outcomes could be outputted by the VCG mechanism,
on input (v, w), and on (v(j), w). We now come to the final part that is to show that (C.4) holds.
We first compute the utilities in all three cases:

Claim C.6. If we choose θ(π2) = K>(π2) and θ(S) = K⊥(S) for everything else (i.e., S 6= ∅ and
S 6= π2).

a. U(θ,VCG(v, w)) = K>(π2) +H −maxS w(S),

b. U(θ,VCG(v(j
∗), w)) ≤ K⊥(π1) +H + ∆−maxS w(S) for every j∗ ∈ J , and

c. U(θ,VCG(v(j), w)) ≤ K>(π2) +H −maxS w(S) for every j 6∈ J .

24As a consequence, Claim C.4(a) and Claim C.4(c) still hold, but Claim C.4(b) will be changed to include the
possible outcomes of ω = (T,R) where T is still in arg maxT⊆π2

v(j)(T ) but w ⊆ T .
25As a consequence, Claim C.4(b) still holds, but Claim C.4(a) and Claim C.4(c) need small changes.
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Proof.

a. We have proved in Claim C.4(a) that (π2, π2) is the only possible allocation in this case, and
therefore U(θ,VCG(v, w)) = U(θ, (π2, π2)) = K>(π2) + w(π2)−maxS w(S) = K>(π2) +H −
maxS w(S).

b. We have proved in Claim C.4(b) that (T, π1) is the only possible allocation in this case, and
therefore if T 6= π2, we have U(θ,VCG(v(j

∗), w)) = K⊥(T ) +w(π1)−maxS w(S) ≤ K⊥(π1) +
H + ∆−maxS w(S). (Here we used the weak monotonicity of K⊥, i.e., K⊥(T ) ≤ K⊥(π1).)

Otherwise, if T = π2 (i.e., the allocation is (π2, π1), we must have that π2 ( π1. By the
(strict) monotonicity of v and (C.6), we have that ∆ < V (π2)−V (π1) < 0. In this case, since
w(π1) = H + ∆ = w(π2) + ∆, we know that SW[(π2, π2)] = SW[(π2, π1)]−∆ > SW[(π2, π1)].
This indicates that (π2, π1) will never be a possible outcome , giving a contradiction.

c. We have proved in Claim C.4(c) that (T, π2) is the only possible allocation in this case, and
therefore U(θ,VCG(v(j

∗), w)) ≤ K>(T )+w(π2)−maxS w(S) ≤ K>(π2)+w(π2)−maxS w(S) =
K>(π2) + H − maxS w(S). (Here we used the weak monotonicity of K>, i.e., K>(T ) ≤
K>(π2).)

We remark here that, in the case when π1 = ∅ or π2 = ∅, the allocation might also be (S,R) for
some w(R) = 0, but one can check that the same conclusions still hold, by our choice of H.)

Corollary C.7. (C.4) is satisfied.

Proof. We recall that (C.3) tells us that v(π2) − v(π1) ≤ K>(π2) −K⊥(π1), but we have v(π2) −
v(π1) > ∆ in (C.6). This tells us that K>(π2) > K⊥(π1) + ∆.

Now, for every j∗ ∈ J ,

U(θ,VCG(v, w)) = K>(π2) +H −max
S

w(S) > K⊥(π1) +H + ∆−max
S

w(S) ≥ U(θ,VCG(v(j
∗), w))

while for every j 6∈ J ,

U(θ,VCG(v, w)) = K>(π2) +H −max
S

w(S) ≥ U(θ,VCG(v(j), w))

The combination of them immediately implies (C.4)

We recall that (C.4) gives a contradiction and says that v is an undominated strategy, and this
ends the proof of Lemma C.3, for Case 1.

C.2 Case 2

Suppose that the second inequality of (C.5) does not hold, that is, v(S′) > minj{v(j)(S′)}. Similarly

as in Case 1, we let J = arg minj

{
ṽ(j)(S′)

}
be the set of minimizers, and let j∗ ∈ J be one of

them. We can always choose some ∆ such that

v(S′) > ∆ > ṽ(j∗)(S′) , (C.8)

and for every j 6∈ J :

ṽ(j)(S′) > ∆ . (C.9)

Now, consider the following witness player, with w(S′) = H and w([m]) = H+∆, and w(S) = 0
everywhere else. Notice that unlike Case 1, ∆ > 0 is always positive. We also let H be sufficiently
large when S′ 6= ∅. We choose H = 0 if S′ = ∅.

26



Claim C.8 (A variant of Claim C.4). If S′ 6= ∅,

a. The allocation of VCG(v, w) is ω = (S′, S′)

b. For all j∗ ∈ J , the allocation of VCG(v(j
∗), w) is ω = (∅, [m]).

c. For all j 6∈ J , the allocation of VCG(v(j), w) is ω = (T, S′), where T ∈ arg maxT⊆S′ v
(j)(T )

(or a probabilistic distribution over them in case of ties).

Proof. For any candidate allocation (S, T ) of the VCG mechanism when the second player reports
w, if T 6∈ {S′, [m]}, then SW[(S, T )] does not contain the big term H and is thus smaller than any
SW[ω] in all three cases. Therefore, we only need to consider outcomes of the form (S, S′) and
(∅, [m]).

a. In this case, SW[ω] = v(S′) + H. If the allocation is of the form (S, S′), by the strict
monotonicity of v, (S′, S′) = ω must be the allocation with the best social welfare. If the
allocation is (∅, [m]) its social welfare SW[(∅, [m])] = ∆ + H < v(S′) + H = SW[ω], using
(C.8). In sum, ω = (S′, S′) must be the allocation of the VCG mechanism.

b. In this case, SW[ω] = H + ∆. For the allocation of the form (S, S′), SW[(S, S′)] ≤ ṽ(j∗)(S) +
H < H + ∆ = SW[ω] (using (C.8)) is worse than the choice of ω.

c. In this case, SW[ω] = ṽ(j)(S′)+H. For the allocation of (∅, [m]), we have that SW[(∅, [m])] =

H+∆ < ṽ(j)(S′)+H = SW[ω] (using (C.9)) is worse than the choice of ω. For the allocation
of the form (S, S′), S must be a subset of S′ and therefore S ∈ arg maxT⊆S′ v

(j)(T ) as
desired, since the VCG mechanism is outputting an allocation with the maximum reported
social welfare. In sum, the allocation must be of the desired form.

Claim C.9 (A variant of Claim C.5). When S′ = ∅ (i.e., S′ = [m]), Claim C.8 only requires the
following small changes:

at any time (T, S′) is a possible allocation declared in Claim C.8, (T,R) for R ⊆ T is now
also possible.26

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0 in this case.
The only place that we used H being sufficiently large, is where we declare that the only possible
candidate allocation for VCG(·, w) is of the form S, S′) or (∅, [m]). This is no longer true as we have
to also consider (S,R) for R 6= S′ or [m]. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] =
SW[(S, S′)]. This means, allocation (S,R) will be possible only if (S, S′) is possible.

Now, we have some knowledge about what outcomes could be outputted by the VCG mechanism,
on input (v, w) and on (v(j), w). We now come to the final part that is to show that (C.4) holds.
We first compute the utilities in all three cases:

Claim C.10 (A variant of Claim C.6). If we choose θ(S) = K>(S) for everything non-empty S:

a. U(θ,VCG(v, w)) = K>(S′) +H −maxS w(S),

b. U(θ,VCG(v(j
∗), w)) = H + ∆−maxS w(S) for every j∗ ∈ J , and

26As a consequence, Claim C.8(b) still holds, but Claim C.8(a) and Claim C.8(c) need small changes.
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c. U(θ,VCG(v(j), w)) ≤ K>(S′) +H −maxS w(S) for every j 6∈ J .

Proof.

a. We have proved in Claim C.8(a) that (S′, S′) is the only possible allocation in this case, and
therefore U(θ,VCG(v, w)) = U(θ, (S′, S′)) = K>(S′) + w(S′) −maxS w(S) = K>(S′) + H −
maxS w(S).

(In the case when S′ = ∅, the allocation might also be (S′, R) for some w(R) = 0, and since
we have chosen H = 0 this utility equation still holds.)

b. We have proved in Claim C.8(b) that (∅, [m]) is the only possible allocation in this case, and
therefore U(θ,VCG(v(j

∗), w)) = 0 + w([m])−maxS w(S) = H + ∆−maxS w(S).

c. We have proved in Claim C.8(c) that (T, S′) is the only possible allocation in this case, and
therefore U(θ,VCG(v(j), w)) ≤ K>(T )+w(S′)−maxS w(S) ≤ K>(S′)+w(S′)−maxS w(S) =
K>(S′) +H −maxS w(S).

(Here we used the weak monotonicity of K>, i.e., K>(T ) ≤ K>(S′). In the case when S′ = ∅,
the allocation might also be (T,R) for some w(R) = 0, and since we have chosen H = 0 this
utility equation still holds.)

Corollary C.11. (C.4) is satisfied.

Proof. We recall that (C.1) and (C.8) tell us that ∆ < v(S′) ≤ K>(S′). Now, for every j∗ ∈ J ,

U(θ,VCG(v, w)) = K>(S′) +H −max
S

w(S) > H + ∆−max
S

w(S) = U(θ,VCG(v(j
∗), w))

while for every j 6∈ J ,

U(θ,VCG(v, w)) = K>(S′) +H −max
S

w(S) ≥ U(θ,VCG(v(j), w))

The combination of them immediately implies (C.4)

We recall that (C.4) gives a contradiction and says that v is an undominated strategy, and this
ends the proof of Lemma C.3, for Case 2.

C.3 Case 3

Suppose that the second inequality of (C.5) does not hold, that is, v(S′′) < maxj{v(j)(S′′)}. Simi-

larly as in Cases 1 and 2, we let J = arg maxj

{
ṽ(j)(S′′)

}
be the set of maximizers, and let j∗ ∈ J

be one of them. We can always choose some ∆ such that

v(S′′) < ∆ < ṽ(j∗)(S′′) , (C.10)

and for every j 6∈ J :

ṽ(j)(S′′) < ∆ . (C.11)

Now, consider the following witness player, with w(S′′) = H and w([m]) = H+∆, and w(S) = 0
everywhere else. Notice that unlike Case 1, ∆ > 0 is always positive. We also let H be sufficiently
large when S′′ 6= ∅. We choose H = 0 if S′′ = ∅.
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Claim C.12 (A variant of Claim C.4). If S′′ 6= ∅,

a. The allocation of VCG(v, w) is ω = (∅, [m]).

b. For all j∗ ∈ J , the allocation of VCG(v(j
∗), w) is ω = (T, S′′), where T ∈ arg maxT⊆S′′ v

(j)(T )
(or a probabilistic distribution over them in case of ties).

c. For all j 6∈ J , the allocation of VCG(v(j), w) is ω = (∅, [m]).

Proof. For any candidate allocation (S, T ) of the VCG mechanism when the second player reports
w, if T 6∈ {S′′, [m]}, then SW[(S, T )] does not contain the big term H and is thus smaller than any
SW[ω] in all three cases. Therefore, we only need to consider outcomes of the form (S, S′′) and
(∅, [m]).

a. In this case, SW[ω] = H+∆. If the allocation is of the form (S, S′′), by the strict monotonicity
of v, (S′′, S′′) = ω must be the allocation with the best social welfare. However, its social
welfare SW[(S′′, S′′)] = v(S′′) + H < H + ∆ = SW[ω], using (C.10). In sum, (∅, [m]) must
be the allocation of the VCG mechanism.

b. In this case, SW[ω] = ṽ(j∗)(S′′)+H. For the allocation of (∅, [m]), we have that SW[(∅, [m])] =

H + ∆ < ṽ(j∗)(S′′) + H = SW[ω] (using (C.10)) is worse than the choice of ω. For the allo-
cation of the form (S, S′′), S must be a subset of S′′ and therefore S ∈ arg maxT⊆S′′ v

(j∗)(T )
as desired, since the VCG mechanism is outputting an allocation with the maximum reported
social welfare. In sum, the allocation must be of the desired form.

c. In this case, SW[ω] = H + ∆. For the allocation of the form (S, S′′), SW[(S, S′′)] ≤ ṽ(j)(S) +
H < H + ∆ = SW[ω] (using (C.11)) is worse than the choice of ω.

Claim C.13 (A variant of Claim C.5). When S′′ = ∅ (i.e., S′′ = [m]), Claim C.12 only requires
the following small changes:

at any time (T, S′′) is a possible allocation declared in Claim C.12, (T,R) for R ⊆ T is now
also possible.27

Proof. Recall that, instead of choosing some sufficiently large H, we choose H = 0 in this case.
The only place that we used H being sufficiently large, is where we declare that the only possible
candidate allocation for VCG(·, w) is of the form (S, S′′) or (∅, [m]). This is no longer true as we have
to also consider (S,R) for R 6= S′′ or [m]. However, since w(R) = 0, SW[(S,R)] = SW[(S,∅)] =
SW[(S, S′′)]. This means, allocation (S,R) will be possible only if (S, S′′) is possible.

Now, we have some knowledge about what outcomes could be outputted by the VCG mechanism,
on input (v, w) and on (v(j), w). We now come to the final part that is to show that (C.4) holds.
We first compute the utilities in all three cases:

Claim C.14 (A variant of Claim C.6). If we choose θ(S) = K⊥(S) for all non-empty S:

a. U(θ,VCG(v, w)) = H + ∆−maxS w(S),

b. U(θ,VCG(v(j
∗), w)) ≤ H +K⊥(S′′)−maxS w(S) for every j∗ ∈ J , and

27As a consequence, Claim C.12(a) and Claim C.12(c) still hold, but Claim C.12(b) needs small changes.
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c. U(θ,VCG(v(j), w)) = ∆ +H −maxS w(S) for every j 6∈ J .

Proof.

a. We have proved in Claim C.12(a) that (∅, [m]) is the only possible allocation in this case, and
therefore U(θ,VCG(v, w)) = U(θ, (∅, [m])) = 0 +w(S′′)−maxS w(S) = H + ∆−maxS w(S).

b. We have proved in Claim C.12(b) that (T, S′′) is the only possible allocation in this case,
and therefore U(θ,VCG(v(j

∗), w)) ≤ K⊥(T ) + w(S′′) − maxS w(S) ≤ K⊥(S′′) + w(S′′) −
maxS w(S) = K⊥(S′′) +H −maxS w(S).

(Here we used the weak monotonicity of K⊥, i.e., K⊥(T ) ≤ K⊥(S′′). In the case when S′′ = ∅,
the allocation might also be (T,R) for some w(R) = 0, and since we have chosen H = 0 this
utility equation still holds.)

c. We have proved in Claim C.12(c) that (∅, [m]) is the only possible allocation in this case,
and therefore U(θ,VCG(v(j), w)) = 0 + w([m])−maxS w(S) = H + ∆−maxS w(S).

Corollary C.15. (C.4) is satisfied.

Proof. We recall that (C.2) and (C.10) tell us that ∆ > v(S′′) ≥ K⊥(S′′). Now, for every j∗ ∈ J ,

U(θ,VCG(v, w)) = H + ∆−max
S

w(S) > H +K⊥(S′′)−max
S

w(S) = U(θ,VCG(v(j
∗), w))

while for every j 6∈ J ,

U(θ,VCG(v, w)) = H + ∆−max
S

w(S) = U(θ,VCG(v(j), w))

The combination of them immediately implies (C.4)

We recall that (C.4) gives a contradiction and says that v is an undominated strategy, and this
ends the proof of Lemma C.3, for Case 3.

D Proof of Theorem 1b

Theorem 1b (restated). In a combinatorial Knightian auction with 2 players and m goods,
consider the VCG with any tie-breaking rule, then there exist products of δ-approximate candidate
sets K = K1 ×K2 and profiles (v1, v2) ∈ UD(K), such that

(best-case θ) ∀θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 5)δ (D.1)

(worst-case θ) ∃θ ∈ K1 ×K2 SW
(
θ,VCG(v1, v2)

)
≤ MSW(θ)− (2m+1 − 3)δ. (D.2)

We prove the theorem in two steps.

Step 1 (Appendix D.1). We construct a candidate hard instance for the VCG mechanism, by
specifying two candidate sets K1 and K2 and two corresponding undominated strategies v1 and
v2, for player 1 and player 2 respectively. To show that indeed v1 ∈ UD1(K1) and v2 ∈ UD2(K2),
we prove that our choices of v1 and v2 do satisfy the requirements given in Lemma C.3.

Step 2 (Appendix D.2). We show that if player 1 has candidate set K1 and reports v1, and
player 2 has candidate set K2 and reports v2 (while other players report 0), the fraction of the
maximum social welfare that is guaranteed is at most the value stated in the theorem.
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D.1 Construction of The Hard Instance

We construct two candidate sets K1 and K2 and two strategies v1 and v2 where, for i = 1, 2, Ki

and vi together satisfy the hypothesis of Lemma C.3; we deduce that for our choices it holds that
v1 ∈ UD1(K1) and v2 ∈ UD2(K2). These choices form our candidate hard instance for the VCG
mechanism. (We carry out the social welfare analysis in Section D.2.)

Fix any labeling π over all 2m − 1 non-empty subsets of [m] such that:
1. if i < j, then πi 6⊇ πj (i.e., π is proper, cf. Definition C.1);
2. πi = π2m−1−i; and
3. π2m−1 = [m].

For instance, when m = 3 we can let π = ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}). It is a simple
exercise to prove that such a π exists for any m ≥ 2.

Also fix any positive constant x (which should be thought of as a large constant).
We begin by choosing K1 and v1 (depending on π and x), and showing that v1 ∈ UD1(K1):

Claim D.1. Choose:
• K1 to be such that K1(πi) = [x− δ/2, x+ δ/2] for all i ∈ {1, . . . , 2m − 1}.
• v1 to be such that v1(πi) = x+ (i− 1)δ for all i ∈ {1, . . . , 2m − 1}.

(See Figure 2a.) Then v1 ∈ UD1(K1).

Proof. It suffices to verify that the assumptions in Lemma C.3 hold. Indeed, K⊥1 and K>1 are
both weakly monotone because they are constant; v1 is strictly monotonic since v1(πi) < v1(πj)
if i < j. If we choose S′ = S′′ = π1, we definitely have v1(S

′) = x ≤ x + δ/2 = K>1 (S′) and
v1(S

′′) = x ≥ x − δ/2 = K⊥1 (S′′). Finally, we are left to verify (C.3), and we need a “witness
labeling” for that. We simply choose π to be this labeling for which we have:

∀ i ∈ {1, . . . , 2m − 2} , v1(πi)− v1(πi+1) = −δ = K⊥1 (πi)−K>1 (πi+1) ,

and for i = 2m − 1,

v1(π2m−1)− v1(π1) > 0 > −δ = K⊥1 (π2m−1)−K>1 (π1) .

This ends the proof that v1 ∈ UD1(K1).

Next, fixing any positive constant ε (which should be thought of as a small constant), we choose
K2 and v2 (depending on π, x, and ε), and show that v2 ∈ UD2(K2):

Claim D.2. Choose:

• K2 to be such that
K2(πi) =

[
(2i− 1)δ − ε, 2iδ − ε

]
for all i ∈ {1, . . . , 2m − 2}, and K2(π2m−1) to be

K2(π2m−1) =
[
x+ 2(2m − 2)δ − ε, x+ (2(2m − 2) + 1)δ − ε

]
.

• v2 to be such that v2(πi) = iδ−ε for all i ∈ {1, . . . , 2m−2}, and v2(π2m−1) = x+(2m−2)δ−ε.

(See Figure 2b.) Then v2 ∈ UD2(K2) owing to Lemma C.3.

Proof. First, for sufficiently small ε, K⊥2 (πi) and K>2 (πi) are both positive. Once again it suffices to
verify that the assumptions in Lemma C.3 hold. Indeed, K⊥2 , K>2 , and v2 are all strictly monotonic:
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Figure 2: The two hard instances constructed in Section D.1 and the choice of true valuation made
in Section D.2, for the special case of m = 4.
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• K⊥2 (πi) < K⊥2 (πj) for i < j,
• K>2 (πi) < K>2 (πj) for i < j, and
• v2(πi) < v2(πj) if i < j.

If we choose S′ = S′′ = π1, we have v2(S
′) = δ−ε < 2δ−ε = K>2 (S′) and v2(S

′′) = δ−ε = K⊥2 (S′′).
We are left to verify (C.3), and we need a “witness labeling” for that. We now choose the labeling
that is the “reverse” of π, i.e., we let π′i = π2m−i; for this choice of π′ we have:

• for 2 ≤ i ≤ 2m − 2 and let j = 2m − 1− i ∈ {1, 2, . . . , 2m − 3}:

v2(π
′
i)− v2(π′i+1) = v2(πj+1)− v2(πj) = δ

=
(
(2(j + 1)− 1)δ − ε

)
−
(
2jδ − ε

)
= K⊥2 (πj+1)−K>2 (πj) = K⊥2 (π′i)−K>2 (π′i+1) ,

• for i = 1:

v2(π
′
i)− v2(π′i+1) = v2(π2m−1)− v2(π2m−2) = x

= K⊥2 (π2m−1)−K>2 (π2m−2) = K⊥2 (π′i)−K>2 (π′i+1) ,

• for i = 2m − 1:

v2(π
′
i)− v2(π′i+1) = v2(π1)− v2(π2m−1)

= − x− (2m − 3)δ > −x− (2(2m − 2))δ

= K⊥2 (π1)−K>2 (π2m−1) = K⊥2 (π′i)−K>2 (π′i+1) .

This ends the proof that v2 ∈ UD2(K2) owing to Lemma C.3.

D.2 Putting Things Together

Let the first two players respectively have candidate sets K1 and K2 and play the undominated
strategies v1 and v2 (from Claim D.1 and Claim D.2, and see also Figure 2); let the rest of the
players have valuation 0 and report 0 (which is an undominated strategy for each such player).

We make the following observations:

• When the players report v
def
= (v1, v2, 0, . . . , 0), the VCG mechanism will always choose the

allocation A = ([m],∅, . . . ,∅).

Indeed, the social welfare of A relative to v is

v1([m]) = v1(π2m−1) = x+ (2m − 2)δ .

On the other hand, for any allocation giving πi 6= ∅ to player 1 and π2m−1−i = πi to player
2, the social welfare relative to v is equal to

v1(πi) + v2(π2m−1−i) = (x+ (i− 1)δ) + (2m − 1− i)δ − ε = x+ (2m − 2)δ − ε ,

which is smaller than that achieved by A; furthermore, for any allocation giving ∅ to player
1 and [m] to player 2, the social welfare relative to v is equal to

v2([m]) = v2(π2m−1) = x+ (2m − 2)δ − ε ,

which again is also smaller than that achieved by A.
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• Assume that we pick the true valuation θ1 ∈ K1 for player 1 to be such that θ1(S) = x for
all non-empty S, and θ2 ∈ K2 for player 2 to be such that θ2(S) = K>2 (S). Of course, we can
only choose θi(S) = 0 for all other players i > 2. (See Figure 2)

• The true social welfare on allocation A is θ1([m]) = x.

• The maximum social welfare is instead the following:

MSW(θ) ≥ θ2([m]) = K>2 (π2m−1) = x+ (2(2m − 2) + 1)δ − ε .

• Hence, the obtained social welfare compared to the maximum social welfare in this case is

SW(θ,VCG(v)) = x ≤ MSW(θ)− (2(2m − 2) + 1)δ + ε .

By choosing ε > 0 sufficiently small, the social welfare guarantee of the VCG mechanism is
at most

MSW(θ)− (2m+1 − 3)δ .

This finishes the proof of (D.2), the worst-case choice of θ for Theorem 1b.
For the best-case choice of θ, we observe that for the same choice of v1, v2,K1,K2, A:

• The true social welfare on allocation A is θ1([m]) ≤ x+ δ/2.

• The maximum social welfare is instead the following:

MSW(θ) ≥ θ2([m]) ≥ K⊥2 (π2m−1) = x+ 2(2m − 2)δ − ε .

• Hence, the obtained social welfare compared to the maximum social welfare in this case is

SW(θ,VCG(v)) ≤ x+ δ/2 ≤ MSW(θ)− 2(2m − 2)δ + δ/2 + ε .

By choosing ε > 0 sufficiently small, the social welfare guarantee of the VCG mechanism is
at most

MSW(θ)− (2m+1 − 5)δ .

This finishes the proof of (D.1), the best-case choice of θ for Theorem 1b. �
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E Theorem 2 with Mixed Strategies

In this section we prove an analogue of Theorem 2 for mixed strategies, as follows.

Theorem 2′. In a combinatorial Knightian auction with n players and m goods, let the VCG
mechanism break ties by preferring subsets with smaller cardinalities.28Then, for all δ, all prod-
ucts K of δ-approximate candidate sets, all profiles θ ∈ K, all profiles of mixed strategies σ ∈
RMmix(K), and all p ≥ 1, we have with probability at least 1− 1/p over the choices of v from σ:

SW(θ,VCG(v)) ≥ MSW(θ)−O(n2p) · δ .

(This result can be tightened to O(n log n log(1/p) · δ) either when (1) players are restricted to
consider only monotone valuations (i.e., θi(S) ≤ θi(T ) for any S ⊆ T ), or when (2) players are
studying RMmix(UD(K)) strategies, rather than just RMmix(K).)

Before proving this theorem, we first illustrate why the result is very different from that of
Theorem 2.

E.1 Why Allowing Mixed Strategies Yields a Different Result

When a regret-minimizing player considers mixed strategies, he may significantly deviate (in ex-
pectation) from his candidate set. (This stands in contrast to the pure-strategy case, where he may
deviate by at most δ; cf. Claim 5.2.) In fact, deviating may happen even in a single-good auction.

An Example in a Single-Good Auction. Let i be a player with candidate set Ki = [x, x+ δ]
in a single-good (Knightian) auction. One can carefully verify that his minimum regret is at most
δ
4 , obtained by a mixed strategy of bidding uniformly at random between x and x + δ. However,

we state without proof that the following mixed strategy σi also provides a regret of δ
4 :

σi =

{
drawn uniformly at random from [x, x+ 3

4δ] w.p. 3
4 ;

x+ tδ, w.p. 1
4(1t −

1
t+1) where t ∈ Z+.

(E.1)

Note that the expected bidding value E[σi] = +∞ is unbounded from above, and one can similarly
construct a strategy in which player i arbitrarily (in expectation) underbids. This destroys the hope
of using linearity of expectation to deduce the mixed-strategy case as a corollary of the pure-strategy
one.

However, any such deviation always satisfies the probabilistic guarantee Pr[σi ≥ x+ tδ] ≤ 1
4t for

overbidding (and similarly, underbidding), resulting in the simple conclusion that, with constant
probability, none of the n players over/underbids by more than O(nδ). The social welfare is
therefore affected by at most O(n2δ) in a single-good auction.29

A Harder Problem in Combinatorial Auctions. In combinatorial auctions with m goods,
each player reports 2m − 1 values on each of the 2m − 1 non-empty subsets of [m]. Thus, a player
may (in principle) choose to independently overbid or underbid each of his 2m − 1 coordinates,
according to (E.1). If so, then, with constant probability, he may choose to (a) overbid by O(2mδ)
on one of his coordinates, and (b) underbid by O(2mδ) on another.

This possibility complicates the analysis, because such a choice of strategy may lead to a social
welfare loss of O(2mδ). Interestingly, we show that (a) cannot happen, but (b) can. However, when
(b) happens, the social welfare is not going to be affected much.

28If giving subsets A or B ( A to player i provides the same social welfare, then the VCG will give B to player i.
29A more careful analysis leads to O(n logn · δ).
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E.2 Proof of Theorem 2′

Proof. We begin by explicitly writing down the formulation of the (maximum) regret in (5.1) for
mixed strategies. Given a candidate set Ki of player i, and a possibly mixed strategy σi from which
his bidding strategy vi is drawn, the (expected maximum) regret of σi for player i is

Ri(Ki, σi) = max
θi∈Ki

max
v−i

(
MSW

(
θi, v−i

)
− Evi∼σi

[
SW

(
(θi, v−i),VCG(vi, v−i)

)])
. (E.2)

We also recall the following notations. For each player i, each candidate set Ki ⊂ Θi, and each
subset T ⊆ [m], we let

Ki(T )
def
= {θi(T )}θi∈Ki , K⊥i (T )

def
= inf Ki(T ),

K>i (T )
def
= supKi(T ), Kmid

i (T )
def
= (K⊥i (T ) +K>i (T ))/2 .

For the same reason as Footnote 16 on page 13 in the main paper, we assume without loss
of generality that for each T , the minimum/maximum point in Ki(T ) exists. That is, K⊥i (T )

def
=

minKi(T ) and K>i (T )
def
= maxKi(T ).

We first note that Claim 5.1 continues to hold:30

Claim 5.1. Let vi be a strategy of player i such that vi(T ) = Kmid
i (T ) for each non-empty T ⊆ [m].

Then Ri(Ki, vi) ≤ δ.

We now prove some properties about an arbitrary (possibly mixed) strategy σi of player i with
regret ≤ δ.

Player Underbidding

We first show a variant of Claim 5.2a from the main paper. It is a probabilistic bound on how a
player i may underbid on each of his 2m − 1 coordinates:

Claim E.1 (player underbidding). Let σi be a (possibly mixed) strategy of player i such that
Ri(Ki, σi) ≤ δ. Then, for any non-empty subset T ⊆ [m], and any real number t ≥ 1,

Pr
vi∼σi

[
K>i (T )− max

T ′⊆T
vi(T

′) > t · δ
]
≤ 1

t
.

Proof. Suppose the claim is not true. Then, there exists T such that

Pr
vi∼σi

[
K>i (T )− max

T ′⊆T
vi(T

′) > t · δ
]
>

1

t
. (E.3)

We contradict our assumption on vi by showing Ri(Ki, σi) > δ.
To show Ri(Ki, σi) > δ, as per (E.2), we must find some v−i and some θi so that

MSW
(
θi, v−i

)
− Evi∼σi

[
SW

(
(θi, v−i),VCG(vi, v−i)

)]
> δ (E.4)

30We note that when mixed strategies are allowed, one can find a strategy with regret δ/2, therefore bidding the
mid-points, having a regret δ, is no longer a regret-minimizing strategy. Since the remaining proof of Theorem 2′

only requires to know that ‘the regret-minimizing strategy has a regret O(δ)’, it suffices to analyze the mid-points,
losing a constant factor of 2.

36



Let j be an arbitrary player other than i. We choose θi ∈ Ki such that θi(T ) = K>i (T ) and v−i as
follows: for every S ⊆ [m]

vj(S)
def
=


H if S = T
H + (K>i (T )− t · δ) if S = [m]
0 otherwise

and vk(S)
def
= 0 for every k 6∈ {i, j}.

Above, H is some huge real number (i.e., much bigger than vi(S) for any subset S).31

Recall that (E.3) tells us that, with probability more than 1
t over the choice of vi from σi, the

event K>i (T )−maxT ′⊆T vi(T
′) > t · δ occurs. Let us denote by Event(vi) this event, and it is not

hard to verify that Event(vi) implies that the outcome VCG(vi, v−i) must allocate ∅ to player i,
and [m] to player j. Therefore, with probability more than 1

t , we have

SW
(
(θi, v−i),VCG(vi, v−i)

)
= θi(∅) + v−i([m]) = H +K>i (T )− t · δ .

On the other hand, MSW(θi, v−i) ≥ θi(T ) + v−i(T ) = K>i (T ) +H, and therefore

Evi∼σi
[
MSW

(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)]
≥ Pr

vi∼σi
[Event(vi)] · Evi∼σi

[
MSW(θi, v−i)− SW

(
(θi, v−i),VCG(vi, v−i)

)∣∣∣Event(vi)
]

>
1

t
·
(
K>i (T ) +H −

(
H + (K>i (T )− t · δ)

))
= δ .

This proves (E.4) and concludes concludes the proof of Claim E.1.

We remark here that the above proof matches our high level description in Appendix E.1. That
is, since a player may have different valuations on all of his 2m − 1 coordinates, he may choose to
independently underbid each of his 2m− 1 coordinates according to Claim E.2 (which is tight, due
to an example generalizing (E.1) to allow multiple goods). If so, with constant probability (using
union bound), he may underbid by O(2mδ) on one of his 2m − 1 coordinates.

Could this large underbidding destroy the social welfare by O(2mδ)? Our answer is No (as we
shall formally explain later) because, if, in the maximum social welfare allocation, player i receives
a subset Bi ⊆ [m] of the goods, all we need to learn from the player’s underbidding is: how much
will player i underbid on coordinate Bi? Therefore, we do not care how much he underbids on
other coordinates, and therefore this 2m factor does not show up in the social welfare loss.

Player Overbidding

The overbidding case is much harder. In fact, one can (essentially) show a similar coordinate-wise
argument as in Claim E.1, and conclude that a player will overbid on each of his coordinates by
at most t · δ, with probability at most 1

t . Via a union bound, this implies that, with constant
probability, he may overbid by O(2mδ) on one of his 2m − 1 coordinates. If this happens, unlike
the underbidding case, the social welfare performance will be very poor. The following example
illustrates this point.

Example. Consider a 2-player auction with m goods, where m is even. The first player is
only interested in the subsets of [m] that have cardinality m/2, and his value for each such
subset lies in the interval [x, x+ δ]. The second player is only interested in the set of all goods,

31Notice that when T = [m] we have T = ∅, and one cannot assign vj(∅) to be a nonzero number. In that
case, we can choose H = 0 and vj remains well-defined, since we must have K>

i (T ) − t · δ > 0 (as otherwise
K>
i (T )−maxT ′⊆T vi(T

′) > t · δ cannot hold, contradicting our assumption). The rest of the proof still goes through.

37



[m], which he values precisely x + (
(
m
m/2

)
− 1)δ. Notice that the maximum social welfare in

this setting is x+ (
(
m
m/2

)
−1)δ. Also notice that, in such an auction, at most one player ‘wins’.

That is, at most one player can be allocated a subset of [m] which he positively values.
Now suppose that player 2 reports his true valuation, while player 1 overbids as follows.

Let t =
(
m
m/2

)
. For each of the t subsets he is interested in, player 1 reports, independently and

with probability 1/t, the value x+ t · δ, and x otherwise. (For each subset he is not interested
in, player 1 reports 0.) Then, with constant probability, player 1 reports x+ t · δ on one of his
coordinates, and thus ‘wins’ the auction. Note that, when player 1 ‘wins’, the social welfare
is at most x+ δ and misses the maximum social welfare by (t− 2) · δ = Ω̃(2mδ).

Therefore, to prove a good social-welfare performance, it is not advisable to bound a player’s
overbidding coordinate-wise. In fact, we prove the following claim, which is significantly different
from what we showed in Claim 5.2b for the pure case. The new claim essentially bounds how a
player i may overbid (on all coordinates) with respect to a given mixed strategy sub-profile σ−i of
his opponents. Since we will eventually be interested in only one particular σ−i —namely, the one
when all players other than i are playing regret-minimizing strategies— we do not need to pay for
the extra O(2mδ) loss in the union bound.

Claim E.2 (player overbidding). Let σi be a (possibly mixed) strategy of player i such that Ri(Ki, σi) ≤
δ, σ−i an arbitrary (possibly mixed) strategy sub-profile of his opponents, and θi ∈ Ki his possible
true valuation. Then, for any real number t ≥ 1,

Pr
vi∼σi

v−i∼σ−i

[
vi
(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ 4t · δ

]
≤ 1

t
. (E.5)

Proof. Suppose the claim is not true and there are choices of σi, σ−i, and θi, such that the above
probability is strictly larger than 1

t . We denote by Event1(vi, v−i) the probabilistic event that
vi
(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ 4t · δ, and we want to show that if Pr[Event1] >

1
t , then

Ri(Ki, σi) > δ, contradicting our assumption on σi. To achieve this, we lower bound (E.2) (using
the same choice of θi provided in the assumption of this claim) by a probabilistic form:

Ri(Ki, σi) ≥ Ev∗−i∼σ∗−i
[
MSW

(
θi, v

∗
−i
)
− Evi∼σi

[
SW

(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)]]

. (E.6)

Now it suffices to choose a witness distribution σ∗−i so that the right-hand side is larger than δ.
We choose σ∗−i as follows. It is reconstructed from the distribution σ−i given in the assumption,

with every occurrence of v−i ∼ σ−i replaced by v∗−i with the same probability, where v∗−i is defined
as:

∀j 6= i ∀S ⊆ [m] v∗j (S)
def
=

{
MSW(θi, v−i) + 2t · δ if S = [m]
vj(S) otherwise

.

Now assuming, by way of contradiction, that the desired regret term Ri(Ki, σi) ≤ δ, which
implies (using (E.2) for v−i drawn from σ−i):

Ev−i∼σ−i
[
MSW

(
θi, v−i

)
− Evi∼σi

[
SW

(
(θi, v−i),VCG(vi, v−i)

)]]
≤ Ri(Ki, σi) ≤ δ .

Using Markov bound, with probability at least 1/2t over the choices of vi ∼ σi and v−i ∼ σ−i, we
have

MSW
(
θi, v−i

)
− SW

(
(θi, v−i),VCG(vi, v−i)

)
≤ 2t · δ
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We denote by Event2(vi, v−i) the probabilistic event such that the above inequality is true. From
(E.5), we know that with probability strictly larger than 1/t − 1/2t = 1/2t we have that both
Event1 and Event2 happen, and therefore

vi
(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ 4t · δ (using Event1)

=⇒ vi
(
VCG(vi, v−i)

)
+ v−i

(
VCG(vi, v−i)

)
> θi

(
VCG(vi, v−i)

)
+ v−i

(
VCG(vi, v−i)

)
+ 4t · δ

=⇒ SW
(
(vi, v−i),VCG(vi, v−i

)
> SW

(
(θi, v−i),VCG(vi, v−i)

)
+ 4t · δ

=⇒ MSW(vi, v−i) > SW
(
(θi, v−i),VCG(vi, v−i)

)
+ 4t · δ

=⇒ MSW(vi, v−i) > MSW(θi, v−i) + 2t · δ (using Event2)

=⇒ MSW(vi, v−i) > v∗j ([m]) (∀j 6= i, using the definition of v∗−i .)

The last strict inequality implies that the allocation under VCG(vi, v−i) must be the same as
VCG(vi, v

∗
−i). This is because v∗−i is only different from v−i on the coordinates [m] for players j 6= i,

but those coordinates only incur a smaller social welfare than VCG(vi, v−i) according to the last
inequality above.

In sum, we have that MSW(θi, v
∗
−i) ≥ v−i([m]) = MSW(θi, v−i)+2t·δ; however, under Event1∧

Event2, the obtained social welfare can be upper bounded as follows:

SW
(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)

= SW
(
(θi, v

∗
−i),VCG(vi, v−i)

)
= SW

(
(θi, v−i),VCG(vi, v−i)

)
≤ MSW(θi, v−i) ≤ MSW(θi, v

∗
−i)− 2t · δ .

Above, the first equality is because VCG(vi, v−i) produces the same allocation as VCG(vi, v
∗
−i); the

second equality is because VCG(vi, v
∗
−i) never gives all the goods to a player j 6= i; and the first

inequality is because, by definition, the VCG maximizes social welfare.
Now we go back to (E.6), and show that Ri(Ki, σi) > δ:

Ri(Ki, σi) ≥ E vi∼σi
v∗−i∼σ∗−i

[
MSW

(
θi, v

∗
−i
)
− SW

(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)]

≥ Pr
vi∼σi

v∗−i∼σ∗−i

[Event1 ∧Event2]×

E vi∼σi
v∗−i∼σ∗−i

[
MSW

(
θi, v

∗
−i
)
− SW

(
(θi, v

∗
−i),VCG(vi, v

∗
−i)
)∣∣∣Event1 ∧Event2

]
>

1

2t
× 2t · δ = δ .

The above conclusion contradicts our assumption that the regret of the mixed strategy σi is at
most δ. This concludes the proof of the claim.

Putting It All Together

Now we go back to the proof of Theorem 2. Let σ = (σ1, . . . , σn) ∈ RMmix(K) be a profile of
regret-minimizing mixed strategies, and let θ ∈ K be any valuation profile. Since there exists a
strategy with regret ≤ δ for each player (see Claim 5.1), we must have Ri(Ki, σi) ≤ δ to satisfy the
assumption of Claim E.1 and E.2.

Now, letting (B0, B1, . . . , Bn) be the allocation that maximizes the social welfare under θ, we
are ready to compute the social welfare guarantee. For any choice of v ∼ σ, let Xi denote the
non-negative probabilistic variable equal to the difference vi

(
VCG(v)

)
− θi

(
VCG(v)

)
; according to

Claim E.2, we have Pr[Xi > 4tδ] < 1
t . Also let Yi denote the non-negative probabilistic variable
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equal to the difference K>i (Bi) − maxT ′⊆Bi vi(T
′), and, according to Claim E.1 (for the choice of

T = Bi), we have Pr[Yi > tδ] ≤ 1
t .

SW(θ,VCG(v)) =
n∑
i=1

θi(VCG(v)) =
n∑
i=1

vi(VCG(v))−
n∑
i=1

Xi

≥
n∑
i=1

max
T ′⊆Bi

vi(T
′)−

n∑
i=1

Xi (because the VCG maximizes social welfare under v)

=
n∑
i=1

K>i (Bi)−
n∑
i=1

(Xi + Yi)

≥
n∑
i=1

θi(Bi)−
n∑
i=1

(Xi + Yi) = MSW(θ)−
n∑
i=1

(Xi + Yi) .

We are now left to bound
∑n

i=1(Xi+Yi). For any p ≥ 1 and each choice of i ∈ [n], with probability
at least 1 − 1

2np , we have that Xi ≤ (8np)δ, and, with probability at least 1 − 1
2np , Yi ≤ (2np)δ.

Using union bound, with a total probability of at least 1 − 1
p (over the choices of v from σ), we

have Xi ≤ (8np)δ and Yi ≤ (2np)δ for all i ∈ [n]. In such a case the above difference satisfies

SW(θ,VCG(v)) ≥ MSW(θ)−O(n2p) · δ .

This concludes the proof of Theorem 2′. �
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