
Physics of Language Models: Part 4.1,

Architecture Design and the Magic of Canon Layers

Zeyuan Allen-Zhu
zeyuanallenzhu@meta.com

FAIR at Meta

May 2, 2025

(version 1.1)*

Abstract

Understanding architectural differences in language models is challenging, especially at
academic-scale pretraining (e.g., 1.3B parameters, 100B tokens), where results are often dom-
inated by noise and randomness. To overcome this, we introduce controlled synthetic pre-
training tasks that isolate and evaluate core model capabilities. Within this framework, we
discover Canon layers: lightweight architectural components—named after the musical term
“canon”—that promote horizontal information flow across neighboring tokens. Canon layers
compute weighted sums of nearby token representations and integrate seamlessly into Trans-
formers, linear attention, state-space models, or any sequence architecture.

We present 12 key results. This includes how Canon layers enhance reasoning depth (e.g., by
2×), reasoning breadth, knowledge manipulation, etc. They lift weak architectures like NoPE
to match RoPE, and linear attention to rival state-space models like Mamba2—validated both
through synthetic tasks and real-world academic-scale pretraining. This synthetic playground
offers an economical, principled path to isolate core model capabilities often obscured at academic
scales. Equipped with infinite high-quality data, it may even predict how future architectures
will behave as training pipelines improve—e.g., through better data curation or RL-based post-
training—unlocking deeper reasoning and hierarchical inference.

*V1 appeared on SSRN on this date; V1.1 (May 18) improves writing and adds the relu2 experiments. Project
page: physics.allen-zhu.com.

ZA sincerely thanks Vahab Mirrokni for the invitation to the Yale workshop in October 2023, where this research
was sparked through enlightening discussions with Vahab Mirrokni and Peilin Zhong. Canon layers build on the
idea of uniform attention previously explored in joint work with Yuanzhi Li [3]. ZA thanks Alberto Alfarano for
introducing the papers [30, 44, 63, 78], and the PyTorch scaled dot product attention function. At Meta, we extend
our heartfelt gratitude to Lin Xiao and Kristin Lauter for their insightful discussions and unwavering supports, which
made this research possible. Special thanks go to Wangzhi Dai, Dinesh Kannappan, Niki Kim, Junjie Qian, Ammar
Rizvi, Travis Seevers, and Stephen Hartken at Meta, as well as Abraham Leal from W&B; without their invaluable
technical assistance, the experiments presented in this paper would not have been feasible. We are deeply grateful
to Songlin Yang and Ali Behrouz for providing detailed instructions on replicating their academic-scale pretraining
experiments, and Fangcheng Sun for many helpful conversations on architecture design in general.
Contribution statement. ZA proposed all ideas, conducted all investigations, implemented all code, performed all
experiments, authored the entire manuscript, and managed all necessary compliance reviews and social promotions;
the term Canon Layers was jointly conceived and designed with Xiaoli Xu.

mailto:zeyuanallenzhu@meta.com
https://www.ssrn.com/abstract=5240330
https://physics.allen-zhu.com/part-4-architecture-design/part-4-1

1 Introduction

R
ecent advances in large language models (LLMs) have sparked transformative progress
across numerous tasks, including question answering, summarization, translation, code
generation [13, 15, 39, 61]. Despite rapid progress, systematic understanding of effective

neural architecture design has remained elusive, fundamentally hindered by some major challenges.

Challenge 1: Pretraining loss as an unreliable proxy for intelligence. Architectural com-
parisons often rely on perplexity or cross-entropy loss, but these metrics do not reliably reflect
real-world capabilities—especially since natural data is skills-mixed. For example, state-space ar-
chitectures like Mamba [19, 26] frequently achieve lower perplexity early in training due to rapid
memorization, yet perform poorly on complex reasoning tasks. Reliance on early stopping via
perplexity is thus problematic: it may lead to comparing models that have merely internalized
surface-level linguistic patterns without developing deeper reasoning or factual understanding [31].

Challenge 2: Noise below emergence thresholds. Emergent abilities—complex skills that
only arise in large-scale models (e.g., 7B parameters, 10T tokens [1])—complicate architectural com-
parisons at smaller, academic scales (e.g., 1.3B parameters, 100B tokens [9, 25, 69]). At these scales,
small benchmark gains (e.g., 2%) often result from random initialization or data shuffling—variance
that can cause 2–4% swings in accuracy (see Figure 1). More fundamentally, models fail even
the simplest 2-hop reasoning tasks, performing no better than random guessing.1 This basic
reasoning floor masks architectural differences in more advanced cognitive skills, making evaluation
at this scale deeply unreliable. While large-scale industry training might reveal these differences,
its prohibitive cost blocks systematic ablations, impeding academic contributions to rigorous archi-
tecture science—and often reducing design choices to heuristics and guesswork.

Challenge 3: Grokking, Data Quality, and Curriculum Learning. Failures in complex
reasoning tasks typically stem from deficiencies in training data, not architectural limitations.
Too few challenging samples and a lack of intermediate-complexity data often force models to
rely on unstable grokking behavior—where generalization only emerges after unnecessarily long
pretraining [43]—and disrupt curriculum learning [10]. For instance, models lacking 2-hop reasoning
data may unpredictably learn 3-hop tasks after extensive exposure to 1-hop and 3-hop examples.
This makes training highly sensitive to randomness, further complicating architectural comparisons.
Reinforcement learning (RL)-based post-training methods, such as GRPO [53] and PPO [52], aim
to address this by delivering tailored data at optimal difficulty levels. While effective, these methods
introduce new experimental confounds—it becomes unclear whether performance gains stem from
pretraining, RL fine-tuning, stochastic training dynamics, or architectural strength.

Our approach: Atomic decomposition of intelligence. To overcome the noise and cost of
real-world pretraining—especially at academic scales where even 2-hop reasoning fails to emerge—we
decompose intelligence into atomic components, such as reasoning depth and breadth, and design
synthetic, controllable pretrain tasks to isolate and evaluate them independently. This framework
sharply characterizes architectural strengths and scalability under clean, idealized conditions (see
Figure 1), offering a principled and economical path for architecture design.

This approach directly addresses Challenge 1 by enabling single-skill evaluations, minimizing
the confounding factors prevalent in real-world pretraining data. For example, it allows rigorous
comparisons of whether architecture A outperforms architecture B in reasoning depth, while en-
suring modifications do not degrade other capabilities. By isolating intrinsic architectural biases,

1In our simplest 2-hop reasoning tasks, birth years for 3 individuals are presented, followed by 3 “[name2] was
born in the same year as [name1]” equivalences. The model is prompted to infer the second group’s birth years.
Academic-scale models can only guess. See Result 12.

1

Real-life Pretraining Obscures Architecture Differences

At academic scale (1.3B parms, 100B tokens):

architectural differences lost in noise

controlled study ≈

across random seeds: ≥2-4%

across models: 1-2%

Beyond this scale:

insufficient to see architectural strengths

models fail simplest 2-hop reasoning:
X born in 1970. Y same birth
year as X. When was Y born?

real-world data: too skill-mixed, delays “emergent” skills

Synthetic Pretraining Enables Reliable Comparison

Our solution: synthetic pretraining playground

• reasoning depth (Depo)
• reasoning breadth (Brevo)

Clear & controlled outcomes
✓ Mini scaling-laws reveal model limits
✓ Sharply reveal model differences (e.g., 2x reasoning depth)

Llama(RoP
E)

this paper

✓ Early emergence of advanced skills
✓ Low cost supports rigorous studies
✓ High-quality data predicts future architectures

• knowledge capacity (Capo)
• knowledge manipulation (Mano)
• hierarchical structures (Lano)

computationally infeasible

GPT2-
small size

Sl
im

P
aj

am
a

Fin
eW

eb
-e

d
u

model size

d
at

a
d

if
fi

cu
lt

y

Figure 1: Architecture search in noisy real-life pretraining (good luck!) vs. our synthetic playground (scientific rigor).

synthetic pretrain tasks reveal properties often obscured by noise and mixed signals in typical
real-life setups.

Challenge 2 is mitigated by lowering resource needs for rigorous comparisons. Synthetic bench-
marks yield infinite high-quality data, enabling meaningful pretraining even for smaller models (e.g.,
GPT2-small) where complex skills might otherwise not emerge. In these controlled environments,
capabilities like deep multi-hop reasoning emerge clearly and reliably, allowing rapid identification
of architectural limitations, investigation of mini scaling-laws, and uncover trends that real-world
pretrained models often fail to reveal due to noise or insufficient signal despite extensive training.

For Challenge 3, we manage data difficulty distributions to ensure adequate representation of
intermediate-complexity samples, smoothing learning curves and enabling the early and consis-
tent emergence of advanced skills—unlike less predictable real-world data prone to grokking-driven
instability. As training pipelines improve—via better data curation or RL-based continued pre-
training—synthetic pretrain benchmarks may provide predictive insight into which architectures
best support scaling to more advanced tasks in the future.

We draw inspiration from physics, where idealized settings—such as frictionless planes or vac-
uum chambers—reveal first principles by removing confounding factors. Similarly, synthetic tasks
eliminate the noise, randomness, and data contamination of real-world datasets, enabling clean,
controlled, apples-to-apples architectural comparisons, much like Galileo’s Pisa tower experiment.

This paper’s key contributions are summarized below:

Result 0: Building the Synthetic Playground (Section 2+3). We introduce five syn-
thetic pretraining tasks—Depo (reasoning depth), Brevo (reasoning breadth), Capo (knowledge
capacity), Mano (knowledge manipulation), and Lano (hierarchical language structure). This
controlled environment can reveal clear, commonsense capability trends at smaller scales: linear
attention (e.g., GLA [68]) consistently underperforms; state-space models like Mamba2 [19] excel at
memory but struggle with reasoning; and full Transformers dominate on complex reasoning tasks.

Result 1: Canon Layers Add Horizontal Information Flow (Section 4). Transformers
lack horizontal information flow within layers, leading to inefficiencies even on simple tasks like
associative recall. Drawing on the musical canon (overlapping repetition), we introduce Canon
layers, horizontal “residual links” across neighboring tokens that can be flexibly inserted at multiple
points — before attention (Canon-A), inside attention (Canon-B), before MLP (Canon-C), inside
MLP (Canon-D). While Canon layers can be implemented in many ways—even simple random
averaging is highly effective—this paper focuses on trainable 1-d linear convolutions of kernel size
4. This is lightweight and integrates seamlessly into any sequence model with minimal code.

Results 2–5: When Transformer Meets Canon (Section 5).

� Boost performance. In our playground, Canon layers improve reasoning depth (200–400%),

2

reasoning breadth (30%), knowledge manipulation length (30%), and more. These stem from
enhanced hierarchical learning dynamics and come with minimal computational overhead.

� Reviving NoPE. Integrating Canon layers transforms NoPE models into strong performers,
often matching or surpassing RoPE(+Canon). Canon layers outperform positional fixes like
ALiBi [44] or H-Alibi [30], and reducing/removing RoPE usage improves length generalization.

� Ablation study. Canon layers contribute cumulatively across sublayer positions (Canon-
A/B/C/D), independently of attention or MLP components. Residual links improve training
efficiency; minimal parameter tuning is required without compromising stability.

� MLP and MoE. Canon layers can recover some knowledge capacity lost in gated MLP or
mixture-of-expert (MoE) architectures, via improved training efficiency and stability.

Results 6–7: When Linear Attention Meets Canon (Section 6).

� Boost performance. Canon layers elevate Gated Linear Attention (GLA [68]) from 1-hop
to 4-hop reasoning depth, double its reasoning breadth and knowledge manipulation length,
making it comparable to Mamba2 and even surpassing it on tasks like Brevo.

� Ablation study. Residual links and full Canon (A/B/C/D) are essential for maximizing
effectiveness for linear-attention models, partial implementations may underperform.

Results 8–9: When Mamba Meets Canon (Section 7).

� Secret of success. Mamba2’s performance is driven by its built-in conv1d mechanism,
which acts as a non-linear Canon-B layer applied to selective coordinates. Removing conv1d

drops performance to match GLA, while replacing it with full Canon layers further boosts
results, highlighting the importance of horizontal information flow over SSM design.

� Ablation study. Canon choices—such as integration points and residual links—can influence
Mamba2’s performance. Mimetic initialization [63], while optimized for length generalization,
harms shorter-context tasks, underscoring the need for diverse pretraining environments.

Results 10–11: Comparing Architectures (Section 8).

� Controlled comparisons. Applying full Canon layers consistently across RoPE, NoPE,
Mamba2, and GLA allows controlled comparisons, revealing that full transformers outperform
linear models in hierarchical reasoning tasks, achieving twice the reasoning depth.

� Reasoning depth challenges. In GLA and Mamba2, limited reasoning depth stems from
accumulated compression and retrieval errors—not memory capacity—pinpointing a key focus
for future research on linear models. Until this is resolved, hybrid designs (e.g., sliding-window
Transformers with linear backbones) remain the most scalable path to deeper reasoning.

Result 12: Academic-Scale Real-World Pretraining (Section 9). Training 1.3B-parameter
models on 100B tokens (context length 4096) reveals high noise and limited resolution, making
many architectural comparisons statistically unreliable. Still, several consistent patterns emerge.
Canon layers significantly improve NoPE and GLA—elevating them to match RoPE and Mamba2,
respectively—while removing conv1d weakens Mamba2 to GLA level. Linear models lag behind
full Transformers on retrieval-heavy tasks, even with Canon layers. All models fail 2-hop reasoning,
even in short contexts (e.g., 100 tokens), underscoring the limitations of academic-scale pretraining.
Reducing or removing RoPE improves long-context generalization when Canon layers are present.
These results align with our synthetic findings (Results 3, 6, 8, 10, 11).

In summary, Canon layers fundamentally improve horizontal information flow across diverse
architectures, enabling deeper reasoning and efficient scalability. Combined with synthetic bench-
marks, they provide systematic insights into future opportunities in model design.

3

Design Criteria for Synthetic Pretrain Tasks

 Challenge architectural depth:

avoid shallow tasks (e.g., associative recall)

mental depth 4 × 8 CoT steps = 32 total steps.

 Test mental reasoning (system-1):

 Focus on short (e.g., 4096) context length

long context often summarized to
short windows for deep reasoning

 Ensure real-world relevance

avoid tasks solvable by external tools

“452352 + 547647 = 999999”

context length 4096

summarization (CoT)

long context (e.g., 1M tokens)

…

…

m
e

n
ta

l r
e

as
o

n
in

g

system 2 reasoning (CoT)

our focus for architecture design

Figure 2: Our design criteria for synthetic pretrain tasks.

2 Synthetic Tasks for Decomposing Intelligence

We design synthetic tasks to systematically evaluate specific capabilities of language model archi-
tectures under controlled conditions, minimizing confounds and enabling clean comparisons. Task
selection is guided by four criteria:

Criterion 1: Tasks must not be shallow. Shallow tasks—like associative recall or copying—are
easily solvable by small and shallow models, and do not meaningfully test architectural strength.
Deep learning relies on stacked layers to progressively learn abstract features [4], so tasks involving
hierarchical reasoning better evaluate architectural scalability and efficiency.

Criterion 2: Emphasis on mental thinking. Tasks should assess a model’s ability to reason
internally without Chain-of-Thought (CoT). While CoT helps decompose problems, it does not
reflect intrinsic “system 1” reasoning [73]. For example, a model reasoning 4 steps internally and
8 via CoT achieves 32 steps, but only internal ones reflect architectural strength. Current models
like o3/R1 produce verbose reasoning traces even for trivial prompts (e.g., “Hello”)—revealing
inefficiencies in system 1. To guide architectural progress, tasks must target mental reasoning.

Criterion 3: Avoid emphasis on length generalization. Length generalization is often
unstable—sensitive to random seeds and training order [78]—and thus unreliable for comparing
architectures. While length generalization is important, models over-optimized for long contexts
(e.g., 100k tokens) may exhibit reduced performance on standard lengths like 4096 tokens.2 In prac-
tice, long inputs are typically summarized into shorter windows before reasoning, so we prioritize
evaluating architectures on dense, 4096-token contexts, where critical reasoning unfolds.

Criterion 4: Relevance to real-world skills. Tasks should prioritize broadly applicable skills
while avoiding capabilities better suited to external tools. For example, large-number arithmetic
(e.g., adding 10-digit numbers) is theoretically interesting but can be delegated to Python in-
terpreters; failures in this area typically reflect limited data exposure rather than architectural
weaknesses (e.g., Llama3 70B miscalculates 452352 + 547647). Synthetic tasks should focus on
universally relevant skills, aligned with real-world applications, to ensure meaningful assessments.

2.1 Our First Set of Five Synthetic Pretrain Tasks

To operationalize the criteria above, we design five synthetic tasks—each targeting a distinct di-
mension of language model capability. We name them Depo, Breo, Capo, Mano, and Lano.

Task Depo: Mental reasoning depth. Reasoning depth represents a fundamental capability
for LLMs, requiring models to retrieve information through multi-step computation. Task Depo
evaluates reasoning depth as k-hop traversal over directed permutations, where models compute the

2This is observed in methods like ALiBi [44], Halibi [30], and Mimetic initialization [63], whose performance
degrades on shorter contexts, as we show in this paper.

4

Five Synthetic Tasks Isolating Atomic Skills

❖ (DEPO): Mental reasoning depth

❖ (BREVO): Mental reasoning breadth

❖ (CAPO): Knowledge capacity

❖ (MANO): Knowledge manipulation

❖ (LANO): Hierarchical language structure

(directed path given in random order)

⟹ What’s the 𝑘-th
successor of 𝐴?

(DAG given in random order)

⟹ What does A
depend on, list in
topological order?

[name] was born in [year], hometown is [city], works for [company]…

How many bit-per-parameter can a model store?

⟹ What’s answer mod 23?

Structural reasoning: resolving ambiguity via global
dynamic programming on CFG languages

13 20 15 2

+ −

×

multi-hop reasoning on knowledge
(i.e., 23× 23 lookup tables)

1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 ...

parse tree 1parse tree 2

010110 1110 0011001010

⋯⋯

⋯ ⋯

Figure 3: Overview of our five synthetic tasks, each isolating an atomic skill for rigorous architectural comparison.

k-th successor for each query q entirely internally, without intermediate steps like Chain-of-Thought
(CoT).3 Each instance is formatted as:

<bos> x1 y1 x2 y2 ... xn yn <query_k1> q1 a1 <query_k2> q2 a2 ... <eos>

Here, 2n tokens encode n directed edges xi → yi, forming a random permutation of n nodes.
The dataset is controlled by two parameters: N , the maximum permutation size, and K, the

maximum reasoning depth. During training, n is sampled from [3, N], while k ∈ [1,K]. Context
lengths are fixed to 2048 tokens. We employ two variants of Depo:

� Depo1: Each node spans 1–2 tokens from vocab size 50, with N = 225, 300, 375 and K = 8.

� Depo2: Each node spans 5–7 tokens from vocab size 4, with N = 75, 100, 125 and K = 16.

Evaluation focuses on both the hardest cases (n = N , k = K) and intermediate difficulty (k = K/2).
For weaker models, we utilize reduced training setups with K = 4, denoted Depo1(K = 4) and
Depo2(K = 4). The full methodological details are provided in Appendix A.1.

Task Brevo: Mental reasoning breadth. This evaluates a model’s ability to process multiple
dependencies simultaneously, as required in tasks involving tree-like traversal or dependency graphs.
For example, solving queries like “Who are Alice’s nephews?” or GSM-like examples requires
parallel reasoning across branches of a graph to process relationships bottom-up [71]. Task Brevo
isolates this capability using recursive traversal of directed acyclic graphs (DAGs), abstracting away
natural language or arithmetic complexities. Each task instance is formatted as:

<bos> x1 y1 x2 y2 ... xm ym <query> q <ans> a1 a2 ... ap <eos>

Here, 2m tokens define m edges xi → yi, representing dependencies where yi depends on xi. Upon
receiving a query vertex q, the model outputs all vertices recursively reachable from q, sorted in
topological order starting from the leaves (e.g., u → v → q yields output u followed by v).

The dataset is parameterized by N , the maximum graph size, with DAGs created using n ≤ N
nodes, each of degree at most 4. Pretraining data is sampled by varying graph sizes, while testing
focuses on the hardest graphs (n = N). We employ two variants of Brevo:

� Brevo1: Each vertex name spans a single token, with N = 70/90/110, fit within 1024 tokens.

� Brevo2: Name spans 2–4 tokens of vocab size 4, with N = 30/40/50, fit within 1536 tokens.

A key discovery from [71] revealed that, due to the non-uniqueness of valid outputs, language
models must preprocess the entire topological order of the DAG mentally before generating the
first token a1. This insight confirms that our synthetic data rigorously evaluates reasoning breadth
by requiring models to globally process the underlying graph structure before producing outputs.

Task Capo: Knowledge capacity. Task Capo evaluates a model’s efficiency in encoding
factual knowledge directly within its parameters, quantified as bits per parameter, which measures

3Using CoT would reduce the k-hop task to simpler 1-hop associative recall.

5

reliable storage capacity. Following the framework in [7], synthetic datasets of (fake) biographies are
constructed to test knowledge retention. Each biography includes several attributes (e.g., birthdate,
university, employer, etc.) and is presented in diverse paraphrased formats to reduce surface-level
memorization [5, 6]. Capacity is measured using the next-token prediction distribution, accounting
for both exact correctness and partial accuracy.

To highlight architectural differences, we adopt an undertrained regime where each biography
is exposed only 100 times during pretraining.4 The dataset includes N = 50K to 2M biographies,
encoding 2 × 106 to 108 total bits of information. Models of varying sizes are tested, and results
are visualized via “bit vs. model size” plots. Additional details are provided in Appendix A.3.

Task Mano: Knowledge manipulation. Task Mano evaluates a distinct form of reasoning: the
ability to manipulate stored knowledge internally, contrasting with in-context reasoning tasks like
Depo or Brevo. While those tasks focus on reasoning over external tokens, Mano requires models
to retrieve factual knowledge embedded in their parameters and perform hierarchical computation
entirely mentally. This combination of retrieval and reasoning makes knowledge manipulation
uniquely challenging and a skill that must be learned during pretraining.5

To test this capability, Mano employs synthetic modular arithmetic expressions inspired by
human mental computation, particularly small-number arithmetic like the 9×9 multiplication table.
Models solve multi-step arithmetic problems without intermediate steps like Chain-of-Thought. For
example, given: <bos> + * a b - c d <ans> the task requires evaluating ((a×b)+(c−d)) mod 23
for ℓ = 3, where operands a, b, c, d are sampled uniformly from [0, 22]. Modular arithmetic provides
the foundational factual knowledge (23×23 operation tables), while the task challenges hierarchical
reasoning by recursively composing operations. Additional details are provided in Appendix A.4.

The dataset is parameterized by a maximum expression length L, with ℓ sampled uniformly
from [1, L]. We prepare three Mano datasets across difficulty levels: L = 10, 13, and 16.

Task Lano: Hierarchical language structure. Task Lano evaluates structural reasoning over
hierarchical relationships and long-range dependencies. Unlike Depo, Brevo, and Mano, which
rely on explicit key-value pairs (in-context or knowledge), Lano challenges models to infer implicit
recursive structures across sequences and resolve global ambiguities within them.

To test this, Lano leverages synthetic datasets built from context-free grammars (CFGs). Train-
ing sequences consist of CFG-valid sentences separated by <bos> tokens. For example:

<bos> 3 3 2 2 1 ... 3 3 1 2 <bos> 1 2 3 3 1 ... 1 2 2 1 <bos> ...

CFGs are designed with token-level ambiguity, where local tokens (e.g., 1, 2, 3) provide insufficient
information to directly infer their mapping to CFG rules. Resolving this requires dynamic pro-
gramming to globally map the entire sequence to a valid recursive application of CFG rules, which
must also be learned during training. This reasoning grows in worst-case complexity (O(n3)) as
sequence lengths increase. Details are in Appendix A.5.

Building upon cfg3f [3], which includes sequences of lengths 100–500, we introduce extended
datasets cfg3j and cfg3k, with sequences ranging up to 200–1000 tokens to increase recursive depth
and test models on more nested rules and longer dependencies. Training uses context lengths of
1536 for cfg3j and cfg3k, compared to 512 for cfg3f. Evaluation prompts models with <bos> to

4Exposing each biography 1000 times during pretraining diminishes architectural differences, as even transformers
without MLP layers can achieve similar storage efficiency [7]. Uniform exposure ensures clean systematic comparisons
while avoiding confounding effects tied to rare outliers and junk data [7].

5For instance, questions like “Was [name] born in an even or odd month?” or derived 2-hop queries such as “What
is [name]’s sister’s birthdate?” demand reasoning layers over stored knowledge. These skills cannot reliably emerge
through supervised fine-tuning alone [6] and require development during pretraining or continued pretraining.

6

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

97/100% 99/100% 96/100% 93/100%
98/100% 84/99% 43/99% 95/100%
79/98% 99/100% 1/24% 3/27%

Task Depo1(K=4, k=4/2)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

20/70% 47/90% 9/76% 20/57%
9/42% 5/41% 3/50% 3/33%
2/16% 12/41% 3/28% 2/33%

Task Depo1(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

1/16% 0/18% 0/10% 2/30%
0/5% 0/5% 0/7% 0/15%
0/0% 0/3% 0/2% 0/8%

Task Depo1(K=4, k=4/2)
GLA - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

99/100% 100/100% 99/100% 100/100%
99/100% 100/100%100/100%100/100%
97/100% 100/100%100/100%100/100%

Task Depo2(K=4, k=4/2)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

75/95% 91/98% 74/95% 90/98%
55/85% 86/97% 57/90% 86/97%
46/83% 69/91% 41/81% 67/91%

Task Depo2(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/3% 3/13% 2/14%
2/10% 1/1% 2/19% 1/18%
1/10% 1/2% 1/2% 1/13%

Task Depo2(K=4, k=4/2)
GLA - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

17.0% 40.1% 71.4% 56.5%
11.5% 87.2% 48.1% 24.2%
2.9% 8.5% 10.8% 26.2%

Task Brevo1
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

4.7% 4.7% 4.1% 24.9%
0.9% 0.8% 1.7% 1.0%
0.2% 0.6% 0.9% 1.3%

Task Brevo1
GLA - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

93.5% 92.8% 86.3% 50.4%
66.6% 80.9% 46.4% 4.8%
17.8% 0.6% 22.3% 2.7%

Task Brevo2
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

13.4% 38.6% 19.8% 54.9%
2.1% 22.2% 2.1% 7.3%
0.8% 1.4% 3.4% 1.4%

Task Brevo2
GLA - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-34-2
8-2

5-34-3
6-3

5-4

6-2

2-8 6-65-63-6

10-62-8 5-6

2-3

5-4

5-34-3

8-2

3-6

8-88-6

6-3

12-6

4-2
6-2

6-6

4-3
5-3

10-6

6-3

6-6

12-6
10-8

2-20

8-6
16-8

3-6

8-8

2-8
5-6

5-4

5-62-83-6

3-20

10-8

6-6

8-6

12-6 2-20

16-8
10-6

8-16
8-8 6-20

4-20

8-8 10-8

3-20

8-6

10-6

4-20

6-6

12-6

8-16

2-20
16-8

6-24
6-20

20-16
12-16

8-24

24-16
12-24

8-8

12-6

10-8

20-20
24-20

2-20

12-16

16-8

6-24
4-20 8-16

6-20

8-24

3-20

20-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-64-3
2-3

8-2

4-2

6-2

5-46-3 5-62-85-3 3-6

4-2

6-2

6-35-3
4-3

5-4 3-6

8-2

8-82-8 6-6 8-6
10-6

12-65-6

2-3

6-62-83-6
8-65-6

10-8
16-8

2-208-8
12-6

4-3

5-4
6-3

5-3

10-6

4-20
8-16

10-8
16-8

3-20
2-2010-6

12-6
6-208-88-66-6

2-8

5-6

3-6

4-20
12-6

8-16

8-6

6-20
16-8

12-16
2-20

8-8

3-20

6-6

6-2410-8
8-24

10-6

20-16
12-6

8-8
10-8

16-8
2-20

8-16
6-203-20

4-20
12-16

8-24
24-20

6-24
20-20

20-16
12-24

24-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Mamba2 - original(conv1d)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

8-2

2-3

4-3
6-2

5-46-35-3
3-6 2-8 6-65-6

2-3

8-2
6-2

4-2

3-6
5-3

4-3

5-46-3

10-62-8 6-6 8-6 8-85-6
12-6

16-8

4-3
5-3 6-3

5-6
2-85-4

6-6
3-6

8-6
12-6

10-6
2-208-8

10-82-8

12-6

3-6

8-8

6-65-6

8-6

2-20
10-8

16-810-6
3-20

4-20
8-16

6-20

4-20
3-20

6-20

8-6

12-6

2-20

16-8
8-8

8-16

6-6

10-8

10-6

12-16
6-24

8-24
20-16

20-16
24-16

12-24
20-20

24-20

12-6

8-8
10-8 2-20

16-8
3-20

12-16
6-24

8-244-20
8-16

6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - GLA - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.4% 75.5% 84.5% 85.2%
55.6% 53.8% 52.5% 46.5%
26.3% 19.7% 20.9% 41.6%

Task Mano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

91.4% 97.1% 96.3% 98.8%
81.5% 95.3% 87.9% 88.0%
52.8% 64.5% 69.9% 94.0%

Task Mano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

56.6% 51.6% 74.5% 61.7%
26.5% 58.0% 34.5% 41.5%
23.5% 50.3% 46.2% 17.5%

Task Mano
GLA - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 96.3% 93.4% 97.6%
74.1% 91.4% 82.3% 90.3%
64.0% 75.1% 60.0% 79.1%

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.2% 93.5% 91.1% 94.1%
69.1% 82.2% 78.2% 84.2%
43.3% 65.3% 50.9% 70.3%

Task Lano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

23.9% 40.1% 46.7% 74.6%
3.3% 6.6% 2.5% 13.8%
9.9% 17.1% 9.5% 16.9%

Task Lano
GLA - original

Figure 4: Initial comparison of RoPE, Mamba2, and GLA on five synthetic tasks. GLA performs poorly everywhere
except knowledge capacity (Capo); Mamba2 excels at knowledge (Capo, Mano); Llama(RoPE) is best at
reasoning (Depo, Brevo, Lano). This confirms our synthetic playground as effective for architectural
comparisons, but introducing Canon layers (see rest of the paper) will build a Pisa tower for more controlled
and fair comparisons, where the landscape shifts drastically and reasoning depth improves 2–4×.

generate CFG-valid sentences, validated via a dynamic programming parser. KL divergence is also
used to compare token distributions against ground truth.

In summary, this set of five synthetic tasks covers non-overlapping skills and distinct aspects
of accuracy—token-level (Depo, Mano), generative (Brevo, Lano), and distributional (Capo,
Lano). While this pool can be further enriched, it serves as a strong starting point for deriving
meaningful architectural insights, as demonstrated in the following sections.

3 Initial Comparison on Well-Known Architectures

Language model architectures have evolved significantly since Transformers [64], resulting in three
major families distinguished by computational mechanisms.

Quadratic-time attention models, pioneered by the original Transformer, include prominent

7

architectures such as BERT [35] and GPT2 [46]. Recent refinements include Rotary Position
Embeddings (RoPE) [12, 59] and gated MLP layers [54]. We use the Huggingface implementation
of Llama, denoted as Llama(RoPE), incorporating RoPE and gated MLP, and a variant without
positional embeddings, Llama(NoPE). We refer to these as RoPE and NoPE respectively when
clear from the context. We exclude relative positional embeddings due to limited empirical benefits
but additional computational costs [3].

RoPE models often generalize poorly beyond training context lengths. In contrast, NoPE
generalizes better but suffers from lower overall performance. Recent attention-score modifications
(e.g., ALiBi [44] and Hard-Alibi [30]) partially address this trade-off; we discuss in later sections.

Linear-time attention reduces computation by compressing sequences into fixed-length repre-
sentations. Examples include Linformer [65], Performer [14], Linear Transformer [34]. We focus on
more recent Gated Linear Attention (GLA) [68], known for computational efficiency and scalability.

Recurrent and state-space models process long sequences using evolving hidden states instead
of attending over all tokens. Mamba [19, 26] exemplifies this category; we analyze its second
generation (Mamba2). Other prominent models include S4 [56], S5 [56], RetNet [60], RWKV [42],
HGRN [45], GSA [76], DeltaNet [70], and GatedDeltaNet [69].

Avoidance of hybrid architectures. We exclude models integrating attention with linear or
state-space methods—e.g., Griffin [20], Samba [48], GatedDeltaNet-H1/H2 [69] or sliding-window
attention—to maintain clarity. Such hybrid approaches excel in extremely long contexts (e.g., 1
million tokens), but our analysis focuses explicitly on precision within standard context windows
(4096 tokens). In practice, long contexts are often compressed to shorter segments (e.g., via CoTs)
for final detailed processing, making precise local reasoning essential.

Hybrid models can obscure architectural trade-offs; aggregated results may not reflect individual
component contributions clearly. For instance, Mamba2 is strong in memory tasks yet weaker in
structured reasoning. Hybrids blending linear/state-space modules with attention can mask these
distinctions. Thus, for transparency, this study focuses entirely on isolated architectures to clearly
analyze their inherent strengths and weaknesses.

Architecture Size Standardization. To ensure fair comparisons, we standardize model sizes
and evaluate Llama, GLA, and Mamba2 as representative architectures from each family.

For all tasks except Capo, we experiment with four architecture sizes. Llama models have 12
or 8 layers, with hidden dimensions of 768 or 512 (and 12 or 8 heads), denoted as 12L768D, 8L512D,
etc. (12L768D matches GPT2-small). We translate these configurations into GLA, Mamba2, and
Mamba2(mlp) to ensure comparable parameter counts.6

For Capo (bit-per-parameter knowledge capacity), we vary model and data sizes more widely.
Following [7], we denote model scale by ℓ-h: for Llama, this means ℓ layers, hidden size 64h, and h
heads. We extend this notation consistently to GLA and Mamba2.

Training. We use identical training settings (batch size, training steps, and learning rate choices)
across architectures to ensure fair comparisons. Complete details are provided in Appendix A. We
also fix random seeds so that all architectures pre-train on precisely identical data sequences.

3.1 Initial Comparison Results

From Figure 4, linear-attention GLA performs weakest overall, Mamba2 excels in knowledge tasks
(Capo, Mano), and Llama(RoPE) performs best on reasoning tasks (Depo, Brevo, Lano).

6The original Mamba2 has no MLP layers: each Mamba layer has 6d2 parameters (for hidden size d), compared
with 12d2 in Llama. Thus, we configure Mamba2 with 24 or 16 layers to match Llama’s size. Mamba2(mlp) alternates
Mamba and gated MLP blocks, thus keeping 12 or 8 total layers. See details in Appendix C.

8

. A B A ? How to predict ?=B

store A to B

attending to A is useless
(B is not there)

(first attention)

(second attention)
use key=A to retrieve value=B

a folklore: associative recall “needs” two layers of attention

first attention only serves the purpose of “read your neighbor”

most language models are missing a horizontal “residual link”

500
1000

1500
2500

5000
10000

15000
20000

25000
30000

35000
40000

45000
50000

training steps

Canon - RoPE(1L-2H-16D)
Canon(cst) - RoPE(1L-2H-16D)
RoPE(1L-2H-16D)
RoPE(1L-4H-32D)
RoPE(1L-8H-64D)
RoPE(1L-16H-128D)
RoPE(2L-2H-16D)
RoPE(2L-4H-32D)
RoPE(2L-8H-64D)
RoPE(2L-16H-128D)

0% 59% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 13% 96% 99% 100%100%100%100%100%100%100%100%100%100%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 100%100%100%100%100%100%100%100%100%100%
0% 14% 99% 100%100%100%100%100%100%100%100%100%100%100%
0% 91% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 91% 100%100%100%100%100%100%100%100%100%100%100%100%
62% 100%100%100%100%100%100%100%100%100%100%100%100%100%

Figure 5: A trivial token-copying experiment for 500 tokens, added for completeness. 1-layer RoPE requires d ≥ 128,
while 2-layer RoPE or 1-layer RoPE + Canon achieves 100% with d = 16.

These results validate the effectiveness of our synthetic playground; however, we avoid deeper
interpretation at this point. As shown later, Llama and GLA lack a critical architectural component,
making this initial comparison incomplete, unfair, and less informative.

For now, we highlight several key remarks.

3×4 mini scaling laws. Randomness may affect outcomes. For example, in Task Mano, despite
two seeds and four learning rates per configuration, smaller models sometimes outperform larger
ones. Thus, robust statistical comparisons are crucial. We address this by testing our synthetic
tasks systematically at three data scales and four architecture sizes (even more for Task Capo).
These “3×4” mini scaling laws enable clearer visual comparisons, reducing variability.

Benefits of synthetic tasks. Synthetic tasks clarify architectural differences starkly (e.g., 90% vs
5%), clearly exposing strengths and weaknesses. By contrast, real-world experiments often produce
modest differences (e.g., 2%) buried in noise. Thus, synthetic pretraining environments allow clean
evaluations of architectures’ scalability and true capabilities.

Interpreting task failures. If a specific architecture (of a given size) fails at a certain difficulty
level (e.g., large N or k), it does not imply the model cannot learn the skill given infinite training.
Our comparison uses a fixed, limited training budget: all architectures train for the same number
of steps with identical data and shuffling, reporting best accuracy across multiple learning rates.
Thus, results should be seen as differences in the speed of skill acquisition, not absolute capability.7

Predicting future pipelines. Synthetic tasks simulate idealized, high-quality pretraining condi-
tions targeting core skills like multi-hop reasoning (Depo). Unlike datasets such as FineWeb-edu or
SlimPajama, which contain sparse reasoning examples obscured by simpler content, synthetic tasks
highlight core capabilities. Currently, 100B-token pretraining fails even simplest 2-hop reasoning
(Result 12). As training pipelines evolve—via improved data curation or RL-based post-training—
synthetic tasks like Depo may better predict models’ potential and guide architectural choices.

4 Canon Layers: Enhancing Horizontal Information Flow

Attention-based Transformers are widely recognized for their ability to perform associative re-
call—e.g., predicting ? in the sequence [A] [B] ... [A] [?] where ? = [B]. One might expect
the second [A] could simply attend to the first to retrieve [B], but causal masking makes this
impossible: the first occurrence of [A] sees no future tokens. Accurate recall thus “requires” two
attention layers—the first copies the first [A] into its neighbor [B]; the second uses this enriched
representation, querying by [A] to retrieve value = [B] (via key = [A]). Using global attention
just to pass information between adjacent tokens is, in effect, shooting a bird with a cannon.

7Faster learning is practically important—for example, a model ideally learns reasoning skills quicker than pure
memorization. Similar observations arise in knowledge capacity tasks [7], where architectural differences vanish with
ample training but become pronounced when training budgets are limited.

9

…

…

can be: attention,
linear-attn, SSM, MLP...

can add Canon anywhere (e.g., A/B/C/D sub-layers)

Canon Layers

shift=1, shift=2,…

 minimal overhead + flexible integration

Explicitly add “horizontal residual” connections:
ℎ𝑡

′ = 𝑤0 ⊙ ℎ𝑡 + 𝑤1 ⊙ ℎ𝑡−1 + 𝑤2 ⊙ ℎ𝑡−2 + 𝑤3 ⊙ ℎ𝑡−3 ∈ ℝ𝑚

❑ random fixed 𝑤0, 𝑤1, 𝑤2, 𝑤3 ∈ ℝ𝑚 already highly effective

❑ trainable 𝑤0, 𝑤1, 𝑤2, 𝑤3:

ℎ′ = 𝒉 + causal_conv1d𝑤(ℎ) – used in this paper

❑ more complex forms (e.g., dynamic conv with 𝑤 depends on ℎ),
possible but less efficient, not explored in this paper for clarity.

delayed repetition,
like in music

𝑤2𝑤1

 residual link “ℎ +” accelerates training

point A
point B
point C
point D

Figure 6: Illustration of Canon layers.

Remark 4.1. This is not a strict lower bound. A 1-layer Transformer is Turing-complete and can
perform recall by blindly aggregating most (or all) context into one position, allowing MLP to do
local query/key/value computations. But this is inefficient: Figure 5 shows that 1-layer Transformer
needs hidden size 128 to recall length-500 sequences, while 2 layers succeed with size 16.

The importance of local context. Even simple tasks like token recall require careful mixing
of local context—not to say more complex ones or when words span multiple tokens. Since MLP
layers don’t mix tokens, attention must handle all communication. Rotary and relative positional
encodings help by biasing attention toward nearby tokens, but they remain tied to attention and
still “shoot birds with cannons.” Similar issues arise in GLA [68] and Mamba2, where recent-token
information must be retrieved via compression mechanisms not optimized for local detail.

Canon layers: general form. Inspired by (vertical) residual connections, we introduce Canon
layers to enhance horizontal information flow across neighboring tokens. Canon layers aggregate
nearby hidden states into the current position, enabling lightweight local mixing within a fixed
window (e.g., size 4), unlike attention-based global aggregation or recurrent compression.

Formally, for any hidden states ht ∈ Rm at token position t, a Canon layer computes:

h′t = w0 ⊙ ht + w1 ⊙ ht−1 + w2 ⊙ ht−2 + w3 ⊙ ht−3,

where ⊙ denotes element-wise multiplication, wi ∈ Rm (i = 0, 1, 2, 3) are weights, and padding
zeros are used for boundary conditions. We call this Canon, borrowing from the musical term, as
it resembles melodies played sequentially at fixed temporal delays.8

Flexible Integration. Canon layers integrate at multiple points within each Transformer block:

� Canon-A: Before the attention block (m = d if hidden size is d).

� Canon-B : Inside the attention block, applied to Q/K/V projections (m = 3d).

� Canon-C : Before the MLP block (m = d).

� Canon-D : Within the MLP block (m = 4d for standard MLP, m = 16
3 d for gated MLP).

Combining all four points gives Canon-ABCD (full-score Canon); partial combinations (Canon-
A/B/ABC) can also be explored. Canon layers integrate flexibly across diverse architectures,
including linear-attention and state-space models. For Mamba2 (without standard MLP layers),
Canon layers appear at Canon-A and Canon-B positions (yielding Canon-AB); for Mamba2(mlp),
the complete Canon-ABCD applies. Canon-B in Mamba2 scales as m = 4d + o(d).9

8In Pachelbel’s Canon in D, violins sequentially play the same melody with delays, creating overlapping horizontal
repetition patterns analogous to Canon layers.

9For example, Mamba2 settings with ssm state size=64, num heads=16 result in m = 4d+ 144 dimensions.

10

Canon layers: Implementation variants. Canon layers can be implemented in many ways.
Even a simple version with fixed, random weights—aggregating past three tokens as horizontal
residual links—already notably enhances performance (Figure 20, Appendix).10 More complex
variants—e.g., dynamic convolutions with input-dependent weighting—are possible but not studied
here, as it remains unclear whether such additional cost is justified.

In this paper, for simplicity and efficiency, we implement Canon layers as 1-d causal convolution
with kernel size 4, available through efficient CUDA kernels implemented by the open-source H3
library (pip package causal conv1d) [23]. We also incorporate explicit residual connections:

h′t = ht + conv1d
(
[ht, ht−1, ht−2, ht−3]

)
, (4.1)

denoted as Canon(res). Without residual connections, we denote it Canon(no-res). Minimal code
changes (just a few lines) are needed for integration. Even fully enabled (Canon-ABCD), Canon
layers increase the parameter count minimally.11 Our emphasis is on clearly demonstrating Canon
layers’ substantial performance benefits; detailed runtime optimizations remain future work.

Related Work. A precursor to Canon layers appears in [3], which studied uniform attention—i.e.,
averaging the past k tokens—for k ∈ {1, 2, 4, 8, 16} on CFG tasks. Surprisingly, this simple mixing
outperformed GPT2 with absolute positional embeddings and closely approached GPT2(RoPE).12

Canon layers generalize this idea: we apply learned, position-specific mixing over a short window
(typically 4 tokens), removing value and projection matrices for better efficiency and modularity.

Our use of causal conv1d is inspired by Mamba [19, 26] and GLA [68], which trace back to
H3 [23], where the component was introduced as “shift-SSM.” After the initial release of our paper,
we also became aware of Primer [57], which proposes “multi-dconv-head” attention. These models
apply conv1d (often with SiLU activation) within SSM or attention modules, without residual
connections. In our terminology, these roughly correspond to Canon-B(no-res).

Our work generalizes and isolates this design as the Canon layer, and systematically evaluates
its effect across all types of sequential models and sublayers (A/B/C/D). By studying Canon
under controlled synthetic pretraining, we can clearly attribute performance gains to the conv1d-
based mixing mechanism, rather than to other architectural components such as attention or state-
space recurrence. Moreover, we show that Canon layers are intrinsically not tied to attention or
SSMs—and in fact, may not benefit from being tightly coupled to them.

Convolutions have been used in Transformers for different goals. Conformer [27] and CvT [67]
integrate heavier convolutional modules for feature extraction in speech and vision. In contrast,
Canon layers are lightweight and designed to enhance horizontal information flow—like horizontal
“residual links.” Notably, even random-weight Canon layers yield substantial improvements.

Concurrent work on Multi-Token Attention (MTA) [25] explores more complex 2D convolu-
tional layers within attention heads. While MTA improves associative recall, it is heavier and
more attention-specific. Investigating whether such designs offer further gains when combined with
Canon, or whether Canon alone suffices for most settings, is an interesting direction for future work.

10Unlike vertical residual links (h′ = h + σ(Wh)), Canon layers aggregate multiple token vectors from different
relative positions (t−1, t−2, t−3). Assigning fixed orthogonal directions effectively provides each position a unique
“ID” for aggregation. Simple scalar weighting (e.g., h′

t = ht +0.4ht−1 +0.2ht−2 +0.1ht−3) can degrade performance.
11Fewer than 0.45% parameters for GPT2-small. For a 1.3B-parameter Llama with Canon-ABCD enabled, pa-

rameters increase by 0.0063%, runtime overhead on an H100 GPU with naive implementation (PyTorch bf16, flash
attention, causal conv1d kernels) is 12.4%, 14.1%, and 20.8% for forward, backward, and generation respectively. For
Canon-AC, overheads reduce to 5.8%, 5.8%, and 7.0%. Further runtime efficiencies are possible (e.g., consolidating
multiple Canon operations across layers), though these optimizations remain beyond this paper’s scope.

12One ICML reviewer rejected the paper, commenting that the results were “too surprising to be true.” We invite
curious readers to try it themselves—it really works.

11

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/34% 1/50% 1/4% 0/1%
0/27% 0/0% 0/12% 0/0%
0/2% 0/56% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

97/100% 92/100% 73/89% 94/100%
57/97% 54/93% 92/99% 99/99%
76/99% 53/99% 16/66% 97/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 97/100% 99/100% 100/100%
98/100% 92/99% 95/100% 95/100%
75/99% 97/100% 85/100% 90/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 99/100% 99/100% 100/100%
96/99% 99/100% 99/100% 99/100%
99/100% 99/100% 98/100% 99/100%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 2/1% 1/1% 30/99%
1/1% 1/90% 1/3% 21/96%
1/2% 1/92% 1/3% 1/50%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

91/99% 97/100% 98/100% 99/100%
98/100% 98/100% 99/100% 98/100%
71/98% 90/100% 94/99% 96/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 100/100% 97/100% 99/100%
97/100% 99/100% 96/100% 97/100%
85/100% 99/100% 98/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

96/100% 85/99% 86/100% 99/100%
94/100% 86/99% 99/100% 99/100%
90/100% 98/100% 93/100% 96/100%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.6% 88.7% 88.3% 91.3%
51.3% 72.4% 69.9% 75.7%
24.8% 49.1% 41.2% 58.8%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

83.7% 93.8% 91.3% 96.5%
62.9% 84.5% 81.2% 90.7%
47.9% 82.2% 69.7% 84.5%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.2% 0.0% 0.0% 0.4%
0.1% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.1%

Task Brevo1
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.8% 94.4% 91.1% 96.2%
63.9% 85.8% 75.5% 92.2%
42.0% 75.3% 58.2% 84.9%

Task Brevo1
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.5% 94.5% 92.3% 95.4%
66.0% 85.3% 79.3% 90.5%
44.6% 75.5% 68.5% 87.8%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.1% 95.6% 92.2% 97.1%
75.4% 87.7% 80.1% 93.5%
55.1% 82.5% 69.3% 88.1%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0%

Task Brevo2
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.4% 93.2% 89.0% 96.1%
61.2% 84.0% 75.2% 91.7%
40.4% 56.0% 56.3% 79.9%

Task Brevo2
Llama(NoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-34-2
8-2

5-34-3
6-3

5-4

6-2

2-8 6-65-63-6

10-62-8 5-6

2-3

5-4

5-34-3

8-2

3-6

8-88-6

6-3

12-6

4-2
6-2

6-6

4-3
5-3

10-6

6-3

6-6

12-6
10-8

2-20

8-6
16-8

3-6

8-8

2-8
5-6

5-4

5-62-83-6

3-20

10-8

6-6

8-6

12-6 2-20

16-8
10-6

8-16
8-8 6-20

4-20

8-8 10-8

3-20

8-6

10-6

4-20

6-6

12-6

8-16

2-20
16-8

6-24
6-20

20-16
12-16

8-24

24-16
12-24

8-8

12-6

10-8

20-20
24-20

2-20

12-16

16-8

6-24
4-20 8-16

6-20

8-24

3-20

20-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

2-3
6-2

8-2
4-3

5-3
6-3 5-4 3-6 2-8 5-6 6-6

2-3

4-2

5-3
4-3

8-2

6-3

12-65-4
3-6

6-2

5-6 6-6
10-68-62-8 8-8

4-3

10-65-6

5-4
6-3

3-6

5-3

12-6
2-20

10-8
16-86-6 8-6

2-8

8-8
3-6

10-6

2-20

2-8

5-6

8-8
3-20

6-6
8-6

16-8
6-2012-6

8-16
4-2010-8

8-66-6

10-6

8-812-6

4-20
10-8

2-20
16-8

3-20
8-16

6-20
12-16

6-24
20-16

8-24

8-24

12-6
8-8

20-16

10-8

12-24
24-16

20-20
24-20

12-16
6-24

2-20

16-8

4-203-20

8-16
6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-2

6-6

6-2
4-2

5-3

6-3
5-65-4 3-6

2-3

2-8

4-3

4-2

12-6

8-2

8-6
10-6

2-3

3-6

4-3

6-3
5-4

6-2

6-62-8

5-3

8-85-6

5-34-3

3-6

6-3

12-6
10-86-6

8-6 8-8
5-6

10-6

2-8

5-4

16-8
2-20

6-6

10-6

8-8

4-20

3-6

8-6
5-6

2-8

12-6

3-202-20
16-810-8

8-16
6-20

10-68-6

8-16

8-8

6-6

8-24

12-6

6-20
6-24

12-16

10-8

4-203-2016-8

20-16
2-2010-8

2-20

8-16

3-20

8-8
12-6

4-20
16-8

6-20

20-16
24-16

8-24
6-24

12-16
24-20

12-24
20-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-6

2-34-2

4-3

5-4
3-6

2-8

5-3

5-6
6-3

8-2

6-2
6-2

2-3
4-2

2-8

6-6

3-6

5-6

5-4
6-3

8-8

5-38-2 4-3

8-6
12-6

10-6

5-3

5-6

6-3

4-3

3-6
2-20

16-8

5-4

8-6

2-8

12-6
8-8

10-8

6-6

10-66-6
5-6

2-8

10-88-812-610-6

3-6

8-6
3-20

2-20

16-8
4-20

8-16
6-2010-8

12-6

8-6

8-810-6

2-20

8-24
16-8

6-246-20

3-20

4-20

12-168-16

20-16

6-6 2-20

10-8

12-6

16-8

8-8

4-20

3-20

8-16
6-20

12-24

12-16

6-24
20-20

24-16
8-2420-16

24-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(NoPE) - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

4-3
5-46-35-3

3-6 2-8 5-6

6-2 8-2

2-3

6-6

2-3

4-2
6-2

5-65-4
8-83-6

6-3

12-62-8

4-3

5-3

8-2

8-66-6
10-6

3-6

8-85-6

6-3

4-3

12-6
2-20

10-8

2-8

5-3

5-4

6-6
16-88-6

10-6

12-6

3-6 2-8

6-65-6

8-8
8-6

10-6
2-20

3-2010-8
16-8

4-20
8-16 6-2010-6

12-6 8-8

6-6

4-20
6-20

8-6

8-16
2-20

12-16
6-2416-8

3-20
10-8

8-24
20-16

8-8

2-2010-8
12-6

4-20

16-8

8-16
3-20

6-20
24-16

12-16
20-20

12-24
6-24

8-24
24-20

20-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.4% 75.5% 84.5% 85.2%
55.6% 53.8% 52.5% 46.5%
26.3% 19.7% 20.9% 41.6%

Task Mano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

95.1% 99.3% 99.3% 99.5%
66.0% 94.6% 97.1% 98.8%
63.7% 82.8% 91.4% 83.0%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 99.2% 99.6%
89.8% 88.5% 98.2% 99.2%
83.7% 83.6% 88.8% 85.3%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

7.1% 7.1% 7.1% 6.9%
7.1% 7.1% 7.2% 7.1%
7.3% 7.3% 7.4% 7.3%

Task Mano
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.7% 98.9% 99.3% 99.3%
83.1% 90.1% 95.9% 98.1%
53.7% 55.5% 89.4% 94.3%

Task Mano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 96.3% 93.4% 97.6%
74.1% 91.4% 82.3% 90.3%
64.0% 75.1% 60.0% 79.1%

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.6% 98.0% 97.2% 98.3%
88.2% 92.0% 88.6% 94.3%
75.2% 87.1% 83.0% 86.7%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.2% 97.5% 96.0% 98.1%
81.4% 90.1% 85.9% 92.6%
66.0% 77.9% 76.1% 78.9%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.0% 0.0% 0.0% 38.8%
0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0%

Task Lano
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

87.9% 91.9% 88.5% 92.5%
55.1% 70.3% 58.6% 78.3%
33.5% 51.0% 37.2% 53.1%

Task Lano
Llama(NoPE) - Canon-ABCD(res)

Figure 7: Column 1�2: Canon layers dramatically enhance RoPE, improving reasoning depth by 2–4×.
Column 4�5: Canon transforms NoPE into a strong performer on par with RoPE-based models.
Column 2+5�3: With Canon, RoPE usage can be reduced — RoPE + ˇ “Canon (RoPE enabled for 1/4
dimensions) outperforms both RoPE/NoPE + Canon, great news for length generalization!

Remark. This figure uses Depo1(K=8) and Depo2(K=16). Earlier results in Figure 4 were based on
Depo1(K=4) and Depo2(K=4), because model performances were weaker.

5 When Transformer Meets Canon

Figure 4+7 show that a 12-layer, 768-dimension Llama(RoPE) model trained on our ideal data can
only handle 4-hop retrieval in contexts of length 2048. Can this be any better?

5.1 RoPE with Canon Layers

Result 2 (Figure 7 — 1st vs. 2nd column). In our controlled playground, Canon layers (ABCD)
introduce substantial improvements: with a 0.5% increase in trainable parameters, reasoning depth
of RoPE increases by 2-4×, reasoning breadth by 30%, knowledge capacity by 10–15%, knowledge
manipulation length by 30%, measurable gains in hierarchical language structure reasoning.

Task Depo. In reasoning depth, RoPE pretrained on Depo1(K = 8)—covering (k ≤ 8)–hop
instances—achieves near-zero accuracy even at k = 4, whereas RoPE+Canon-ABCD exceeds 50%
at k = 8. On Depo2(K = 16)—a more challenging setup where each directed edge spans 10–14
tokens, far beyond a 4-token Canon window—RoPE completely fails, while RoPE+Canon-ABCD
attains near-perfect accuracy at k = 16. This demonstrates that Canon layers are not merely for
single-token recall: by enriching local representations of multi-token segments, they empower the

12

0 20000 40000 60000 80000 100000 120000 140000
Train steps

0

50

100

Ac
cu

ra
cy

 o
n

k

Task Depo2(K=16) | N=125 | Llama(RoPE)

k=16
k=1
k=2
k=4
k=8

0 20000 40000 60000 80000 100000 120000
Train steps

0

50

100

Ac
cu

ra
cy

 o
n

k

Task Depo2(K=16) | N=100 | Llama(RoPE)

k=16
k=1
k=2
k=4
k=8

20000 40000 60000 80000 100000
Train steps

0

50

100

Ac
cu

ra
cy

 o
n

k

Task Depo2(K=16) | N=75 | Llama(RoPE)

k=16
k=1
k=2
k=4
k=8

0 20000 40000 60000 80000 100000 120000 140000
Train steps

0

50

100

Ac
cu

ra
cy

 o
n

k

Task Depo2(K=16) | N=125 | Llama(RoPE) + Canon-ABCD(res)

k=16
k=1
k=2
k=4
k=8

0 20000 40000 60000 80000 100000 120000
Train steps

0

50

100

Ac
cu

ra
cy

 o
n

k

Task Depo2(K=16) | N=100 | Llama(RoPE) + Canon-ABCD(res)

k=16
k=1
k=2
k=4
k=8

20000 40000 60000 80000 100000
Train steps

0

50

100

Ac
cu

ra
cy

 o
n

k

Task Depo2(K=16) | N=75 | Llama(RoPE) + Canon-ABCD(res)

k=16
k=1
k=2
k=4
k=8

Figure 8: Training curves for the 8L512D RoPE model, with and without Canon layers, on Task Depo2(K = 16),
evaluated at depths k = 1, 2, 4, 8, 16 and graph size n = N , across three learning rates.

all acc
8L512D

depth 1
8L512D

depth 2
8L512D

depth 3
8L512D

depth 4
8L512D

depth 5
8L512D

all acc
8L768D

depth 1
8L768D

depth 2
8L768D

depth 3
8L768D

depth 4
8L768D

depth 5
8L768D

all acc
12L512D

depth 1
12L512D

depth 2
12L512D

depth 3
12L512D

depth 4
12L512D

depth 5
12L512D

all acc
12L768D

depth 1
12L768D

depth 2
12L768D

depth 3
12L768D

depth 4
12L768D

depth 5
12L768D

N=70
N=90

N=110

79% 87% 79% 76% 76% 68% 91% 91% 94% 89% 92% 89% 46% 51% 47% 44% 43% 43% 77% 85% 79% 75% 74% 78%
26% 29% 26% 26% 27% 20% 63% 71% 66% 64% 56% 53% 29% 37% 36% 25% 25% 22% 64% 74% 69% 61% 57% 55%
18% 32% 21% 13% 11% 12% 28% 44% 32% 22% 19% 19% 8% 20% 10% 5% 4% 6% 29% 46% 33% 24% 22% 18%

Task Brevo1 - Llama(RoPE) - original

all acc
8L512D

depth 1
8L512D

depth 2
8L512D

depth 3
8L512D

depth 4
8L512D

depth 5
8L512D

all acc
8L768D

depth 1
8L768D

depth 2
8L768D

depth 3
8L768D

depth 4
8L768D

depth 5
8L768D

all acc
12L512D

depth 1
12L512D

depth 2
12L512D

depth 3
12L512D

depth 4
12L512D

depth 5
12L512D

all acc
12L768D

depth 1
12L768D

depth 2
12L768D

depth 3
12L768D

depth 4
12L768D

depth 5
12L768D

N=70
N=90

N=110

88% 92% 89% 87% 86% 89% 91% 95% 92% 90% 90% 100% 85% 87% 86% 84% 82% 81% 89% 91% 90% 87% 87% 84%
70% 79% 73% 68% 64% 62% 76% 83% 78% 74% 71% 70% 51% 64% 56% 48% 44% 38% 72% 79% 75% 71% 68% 63%
41% 61% 46% 37% 33% 27% 59% 73% 63% 55% 50% 50% 25% 43% 29% 19% 19% 14% 49% 66% 53% 45% 42% 36%

Task Brevo1 - Llama(RoPE) - Canon-ABCD(res)

all acc
8L512D

depth 1
8L512D

depth 2
8L512D

depth 3
8L512D

depth 4
8L512D

depth 5
8L512D

all acc
8L768D

depth 1
8L768D

depth 2
8L768D

depth 3
8L768D

depth 4
8L768D

depth 5
8L768D

all acc
12L512D

depth 1
12L512D

depth 2
12L512D

depth 3
12L512D

depth 4
12L512D

depth 5
12L512D

all acc
12L768D

depth 1
12L768D

depth 2
12L768D

depth 3
12L768D

depth 4
12L768D

depth 5
12L768D

N=70
N=90

N=110

91% 94% 92% 91% 91% 89% 96% 97% 97% 96% 97% 95% 84% 86% 85% 82% 82% 83% 94% 95% 93% 94% 95% 94%
81% 86% 82% 80% 79% 80% 91% 93% 91% 90% 89% 93% 63% 72% 65% 62% 56% 56% 84% 89% 85% 84% 83% 80%
70% 78% 72% 67% 65% 65% 84% 90% 86% 85% 82% 83% 48% 66% 51% 45% 41% 35% 82% 88% 84% 82% 79% 75%

Task Brevo1 - Llama(RoPE) - Canon-ABCD(res)

Figure 9: Detailed accuracies for Task Brevo1, shown overall and stratified by dependency graph depths 1, 2, 3, 4, 5.

global attention to more effectively chain information across hops.13

These gains may seem surprising. For associative recall (analogous to Depo1 with k = 1),
theory suggests a single Canon + attention layer suffices (recall Figure 5), suggesting Canon could
reduce required attention layers by at most one. So, why a 2–4× increase in reasoning depth?

The answer lies in learning dynamics. Deep reasoning tasks like Depo unfold through a hier-
archical learning process—models first master 1-hop, then gradually progress to 2-hop, 3-hop, and
beyond. This process relies heavily on two factors: (1) training data spanning a range of difficulty
levels and (2) architectural support like residual connections. Without either—e.g., training only
with k = 8 data or removing residuals—the model can fails entirely.14

Thus, architectures that enable faster mastery of 1- and 2-hop reasoning climb the hierarchy
faster, as illustrated in Figure 8. RoPE + Canon-ABCD achieves deeper reasoning progression
much faster than vanilla RoPE, leveraging the inherent easy-to-hard structure of multi-hop tasks.
We emphasize again that this is not about performance under infinite training data—RoPE could
eventually achieve similar accuracy on Depo2(K = 16). However, RoPE + Canon achieves com-
parable results with significantly fewer training steps, making it far more efficient.

Task Brev. On reasoning breadth, we observe 30% improvement by introducing Canon-ABCD.
Specifically, the accuracies of RoPE to solve Brevo1(N = 70) or Brevo2(N = 30) resemble the
performance of RoPE+Canon to solve Brevo1(N = 90) or Brevo2(N = 40). Since input length
scales with N , this reflects roughly 30% increase in reasoning breath.

To understand the source of this improvement, we analyze the accuracy across tasks stratified
by depth of the dependency depth. Recall each query in Brevo requires the model to identify all
vertices it recursively depends on, forming a sub-DAG of varying (minimum) depth. In Figure 9,

13Depo2 is designed so a 4-token window cannot resolve key–value pairs spanning 10–14 tokens, posing a substantial
challenge even for Canon.

14The first theory foundation for why deep learning can perform deep (hierarchical) learning was established by
Allen-Zhu and Li [2] (in the 3-layer case) and Allen-Zhu and Li [4] (for ω(1)-layer). They show that deep learning
relies on easy-to-hard curricula and residual structures for progressively building complexity.

13

we plot model accuracy not only overall but also separately for problem instaces spanning DAG
depths of 1, 2, 3, 4, 5. The results show that vanilla RoPE struggles with instances involving greater
DAG depth, whereas RoPE+Canon improves reasoning performance on deeper structures. This
suggests that Canon-ABCD enhances localized reasoning paths within Transformer blocks, allowing
for better handling of recursive dependency, which can be challenging for standard attention alone.

Task Capo. On knowledge capacity, prior work [7] found that gated MLP layers in Llama(RoPE)
reduce model capacity due to slower and less stable training dynamics. One remedy proposed
in that work is to revert gated MLP back to standard MLP; however, this sacrifices reasoning
capability (see Section 5.4). Here, we present an alternative solution: adding Canon layers. Canon
layers improve training speed and increase the effective capacity by 10–15% in the controlled 100-
exposure pretraining regime for Capo. On a separate note, GPT2(RoPE) models that originally
employ standard MLP exhibit no capacity loss after Canon layers are introduced (Figure 11).

Task Mano. On knowledge manipulation, Canon layers increase manipulable length. RoPE+Canon
matches the performance of vanilla RoPE on Mano(L = 10) when tested on Mano(L = 13), a 30%
improvement in length. This again stems from Canon layers accelerating hierarchical learning,
enabling the model to scale from simpler tasks (L = 1) to more complex ones (L = 2, L = 3, and
beyond) faster. For simplicity, we omit the hierarchical learning speed visualization.

Task Lano. Canon layers improve RoPE’s performance on hierarchical language structure rea-
soning, though interpreting the gains requires some algorithmic background. For context, dataset
cfg3k adds one level of structural complexity above cfg3f, using the same CFG rule distribution
(see Appendix A.5). RoPE+Canon outperforms standard RoPE on cfg3k, but still struggles to
fully handle this increased complexity. This is expected, as deeper CFG structures increase se-
quence length n by 2–3×, and parsing these CFGs with dynamic programming involves worst-case
time complexity O(n3). Consequently, cfg3k poses arguably more than 8× greater computational
challenge compared to cfg3f. Our intermediate dataset cfg3j has difficulty around 4×, suggesting
RoPE+Canon can handle roughly twice as challenging structure-learning tasks comparing to RoPE.

Summary. Canon layers consistently improve performance across reasoning, knowledge and lan-
guage tasks, all without introducing instability or accuracy trade-offs.

5.2 NoPE with Canon Layers

Result 3 (Figure 7+10a). Canon layers transform NoPE. Key findings include:

� NoPE+Canon matches RoPE+Canon and even surpasses it on Depo; a remarkable result
given that without Canon, NoPE achieves essentially zero performance on all measures.

� NoPE+Canon significantly outperforms existing fixes for NoPE, such as ALiBi and H-Alibi.

� With Canon layers, RoPE usage can be greatly reduced: RoPE on only 1/4 dims (denoted
RoPE+ ˇ “Canon) outperforms both RoPE/NoPE+Canon, great news for length generalization.

a(Sub-results correspond to Figure 7 (4th vs 5th column), Figure 10, and Figure 7 (3rd column), respectively.)

Canon layers skyrocket NoPE performance. Canon layers dramatically improve NoPE (No
Positional Embedding) transformers, lifting them from near-zero accuracy to competitive levels,
even slightly surpassing RoPE+Canon on reasoning depth. NoPE-Canon is only weaker on Task
Lano, which involves hierarchical structural learning over long sequences, thus relying more heavily
on relative distance between input tokens; yet even there NoPE-Canon remains competitive with
alternatives such as Mamba2.

14

Dominance over existing fixes on NoPE. While NoPE excels at length generalization, its
performance on complex reasoning tasks has historically been weak. Fixes like ALiBi [44] and Hard-
Alibi [30] partially address this: ALiBi applies a distance-based penalty to attention weights15,
while Hard-Alibi disables attention beyond distance h for the h-th head. Although these methods
improve NoPE performance (partly mimicking RoPE), Canon layers clearly dominate. As shown
in Figure 10 (top), NoPE+Canon significantly outperforms both alternatives.

Minimal RoPE usage with Canon layers. Canon layers eliminate the need for heavy RoPE
usage, and excessive RoPE can even hurt performance. With Canons, minimal RoPE usage is
sufficient—often preferable—for optimal results. For example, enabling RoPE on half of the heads
at half of their dimensions (denoted ˇ “Canon) consistently outperforms full RoPE usage or NoPE, as
shown in Figure 7 (3rd column). This is great news for long-context generalization: RoPE is
a known bottleneck for Transformers with longer inputs. As Canon layers allow significantly reduced
RoPE without performance loss, they become indispensable for length generalization tasks.16

Remark 5.1. Despite their versatility, Canon layers alone cannot fully resolve extremely challenging
tasks that require deep hierarchical reasoning over long sequences (e.g., cfg3k in Task Lano). Such
tasks, requiring O(n3) dynamic programming over 1000 tokens, remain computationally demanding.
Nevertheless, Canon layers consistently offer huge improvements outside these specialized scenarios.

These findings translate to real-life. To be shown in Section 9, NoPE+Canon consistently
matches or surpasses RoPE+Canon in real-world pretraining; the RoPE+ ˇ “Canon variants outper-
form RoPE+Canon on several reasoning tasks, particularly involving long-context inputs.

Remark 5.2. This paper focuses on architectural differences within computational stages after
relevant information is retrieved into manageable contexts (e.g., 4096 tokens). Techniques like
DeepSeek’s NSA architecture [74], designed for retrieval and compression from extremely long
inputs (e.g., 1M tokens), are complementary to Canon layers. Such techniques and Canon layers
can thus jointly handle distinct processing phases in long-context models.

5.3 Ablation Studies With Canon Layers

This section systematically investigates the design choices in Canon layers via ablation studies.

Component-level contributions. Each Canon component (A/B/C/D) contributes meaningfully
to performance, with cumulative benefits from combinations. Adding even a single Canon layer
yields notable gains, and stacking multiple Canon layers across sub-layers further amplifies these
improvements, especially on weaker architectures like NoPE. Summaries appear in Figure 10 (for
model size 12L768D) and additional size experiments in Appendix D.2.

Role of residual connections. Residual links around Canon layers — i.e., the “ht+” part of (4.1)
— are critical for training stability and effective learning, preserving vertical computational path-
ways and allowing global representations to selectively incorporate local context. Without residual
connections, training becomes slower and less stable (see rows marked “NoRes” in Figure 10).

Independence of Attention/MLP. Prior works (e.g., the GLA [68] codebase and Primer [57])
focused solely on convolution operations within attention projections — Canon-B(no-res). How-
ever, we find that Canon-ACD alone already achieves substantial performance improvements, with-
out modifying attention mechanisms. Similarly, Canon-ABC or even Canon-AC perform strongly

15Specifically, adding −|j − i| · 2−8h/H to the logits of head h of H total heads.
16Alternative reduced-RoPE configurations explored in the appendix include: ˇ “ ˇ “ (1/4 of heads at full dimensions)

and ˇ “ ˇ “ ˇ “ (all heads at 1/4 dimensions, as in GPT-NeoX [12]). Among these, ˇ “ and ˇ “ ˇ “ ˇ “ are comparable, slightly better
than ˇ “ ˇ “ according to Figure 22.

15

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D Alibi
Halibi

original

N=225 - Act - Res

N=225 - NoRes

N=225 - Res

N=300 - Act - Res

N=300 - NoRes

N=300 - Res

N=375 - Act - Res

N=375 - NoRes

N=375 - Res

83/99% 5/53% 29/84% 85/100%
66/99% 100/100% 99/100% 76/99% 98/100% 93/99% 85/99% 38/43% 71/96% 0/0%
99/100% 99/100% 100/100% 98/100% 99/100% 62/97% 99/99% 76/98% 60/96%
7/28% 0/0% 77/99% 53/97%
68/99% 100/100% 99/100% 82/99% 96/100% 66/98% 0/68% 23/85% 47/89% 0/0%
94/100% 99/100% 99/100% 93/99% 86/91% 49/93% 88/99% 90/99% 60/93%
0/10% 0/0% 5/49% 1/90%
7/78% 99/100% 96/100% 78/97% 97/100% 49/97% 43/75% 0/28% 53/94% 0/0%
54/98% 93/99% 99/100% 89/99% 83/99% 52/94% 95/97% 55/93% 90/99%

Task Depo1(K=8, k=8/4) - Ablation study - Llama(NoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D Alibi
Halibi

original

N=70 - Act - Res
N=70 - NoRes

N=70 - Res
N=90 - Act - Res

N=90 - NoRes
N=90 - Res

N=110 - Act - Res
N=110 - NoRes

N=110 - Res

6.9% 1.2% 92.5% 92.7%
84.5% 82.0% 88.6% 69.3% 90.9% 92.2% 93.4% 83.6% 84.4% 0.4%
88.5% 95.3% 96.2% 94.6% 95.6% 61.6% 92.8% 90.5% 91.8%
21.4% 2.9% 55.3% 84.7%
45.6% 49.6% 70.0% 24.6% 72.9% 75.0% 76.8% 49.3% 58.1% 0.0%
22.2% 89.0% 92.2% 85.6% 90.9% 51.0% 81.7% 79.4% 74.8%
1.6% 2.1% 34.1% 49.1%
58.3% 20.4% 38.2% 14.2% 20.0% 40.6% 57.7% 31.3% 31.8% 0.1%
50.7% 77.1% 84.9% 63.6% 83.0% 2.9% 67.3% 41.1% 40.5%

Task Brevo1 - Ablation study - Llama(NoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D Alibi
Halibi

original

L=10 - Act - Res
L=10 - NoRes

L=10 - Res
L=13 - Act - Res

L=13 - NoRes
L=13 - Res

L=16 - Act - Res
L=16 - NoRes

L=16 - Res

55.9% 93.3% 39.4% 52.1%
95.8% 97.5% 94.4% 97.1% 99.2% 28.3% 11.6% 98.8% 99.2% 6.9%
90.3% 98.6% 99.3% 98.3% 99.3% 95.6% 99.2% 78.2% 61.2%
24.0% 29.5% 7.6% 25.5%
56.2% 87.7% 84.9% 73.0% 96.7% 33.7% 7.5% 98.4% 98.4% 7.1%
66.3% 93.1% 98.1% 97.1% 98.7% 70.8% 98.1% 30.1% 15.8%
29.7% 30.3% 7.6% 7.9%
8.1% 81.2% 27.5% 48.3% 93.8% 7.6% 7.5% 72.8% 97.6% 7.3%
29.0% 93.3% 94.3% 90.9% 96.8% 80.5% 72.1% 19.5% 7.8%

Task Mano - Ablation study - Llama(NoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D Alibi
Halibi

original

N=75 - Act - Res

N=75 - NoRes

N=75 - Res

N=100 - Act - Res

N=100 - NoRes

N=100 - Res

N=125 - Act - Res

N=125 - NoRes

N=125 - Res

85/99% 37/88% 51/99% 1/82%
34/95% 1/1% 1/1% 80/97% 30/98% 25/97% 43/93% 78/98% 46/98% 0/0%
35/96% 100/100% 99/100% 90/100% 99/100% 71/98% 97/100% 36/99% 75/99%
73/99% 8/82% 72/98% 41/99%
25/88% 1/1% 1/1% 1/83% 2/78% 47/93% 5/95% 39/89% 29/87% 0/0%
94/100% 99/100% 99/100% 96/100% 99/100% 17/91% 98/100% 45/93% 17/93%
10/91% 1/52% 30/97% 2/81%
1/36% 1/1% 1/1% 41/83% 2/78% 68/97% 23/94% 68/90% 23/91% 0/0%
41/96% 99/100% 96/100% 90/99% 95/100% 2/92% 63/96% 12/93% 81/99%

Task Depo2(K=16, k=16/8) - Ablation study - Llama(NoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D Alibi
Halibi

original

N=30 - Act - Res
N=30 - NoRes

N=30 - Res
N=40 - Act - Res

N=40 - NoRes
N=40 - Res

N=50 - Act - Res
N=50 - NoRes

N=50 - Res

93.6% 91.0% 94.0% 93.7%
89.3% 90.0% 93.6% 87.7% 92.0% 92.5% 93.8% 93.4% 88.4% 0.0%
94.0% 95.4% 96.1% 95.4% 96.0% 93.2% 94.1% 93.7% 94.7%
84.1% 79.8% 85.7% 84.8%
80.4% 82.9% 81.9% 70.0% 88.4% 84.7% 85.5% 84.8% 80.4% 0.0%
87.0% 88.8% 91.7% 88.7% 91.6% 81.2% 86.3% 86.7% 84.3%
75.0% 64.2% 73.0% 75.6%
66.3% 55.7% 68.7% 19.4% 72.4% 71.8% 75.0% 72.9% 63.5% 0.0%
75.9% 76.0% 79.9% 75.7% 85.2% 50.4% 68.0% 74.0% 76.9%

Task Brevo2 - Ablation study - Llama(NoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D Alibi
Halibi

original

cfg3f - Act - Res
cfg3f - NoRes

cfg3f - Res
cfg3j - Act - Res

cfg3j - NoRes
cfg3j - Res

cfg3k - Act - Res
cfg3k - NoRes

cfg3k - Res

77.5% 77.3% 92.2% 89.1%
73.9% 68.9% 67.9% 85.1% 86.2% 79.3% 81.3% 78.3% 8.0% 38.8%
82.9% 91.1% 92.5% 90.6% 93.1% 82.7% 89.7% 90.9% 91.2%
50.7% 59.0% 71.6% 76.6%
29.8% 12.0% 17.3% 54.1% 56.3% 55.3% 69.3% 54.1% 6.8% 0.0%
64.2% 78.7% 78.3% 76.7% 82.3% 65.2% 72.7% 76.4% 70.5%
36.0% 39.7% 57.6% 50.6%
18.3% 18.1% 9.4% 28.7% 26.3% 36.0% 37.6% 23.6% 5.2% 0.0%
41.8% 54.1% 53.1% 54.0% 51.2% 41.4% 42.3% 52.7% 57.8%

Task Lano - Ablation study - Llama(NoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D
original

 Canon-ABCD

 Canon-B

 Canon-ABCD

 Canon-ABCD

N=225 - Act - Res

N=225 - NoRes

N=225 - Res

N=300 - Act - Res

N=300 - NoRes

N=300 - Res

N=375 - Act - Res

N=375 - NoRes

N=375 - Res

85/100% 48/96% 0/80% 0/81%
97/100% 40/92% 96/100% 98/100% 97/100% 78/99% 19/94% 0/1% 99/100%
93/100% 59/81% 94/100% 94/100% 96/100% 25/43% 92/100% 0/98% 100/100% 100/100% 97/100% 99/100%
0/30% 0/10% 0/77% 98/100%
66/99% 34/91% 54/99% 98/100% 95/100% 84/97% 79/99% 0/0% 84/100%
51/98% 89/99% 99/99% 51/95% 98/100% 0/40% 75/94% 0/85% 48/94% 95/100% 70/97% 100/100%
0/98% 68/100% 0/0% 0/23%
17/96% 28/92% 68/95% 48/98% 81/99% 26/99% 0/99% 0/0% 99/100%
0/13% 3/86% 97/100% 89/99% 68/100% 0/13% 51/100% 3/61% 60/99% 90/100% 6/99% 98/100%

Task Depo1(K=8, k=8/4) - Ablation study - Llama(RoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D
original

 Canon-ABCD

 Canon-B

 Canon-ABCD

 Canon-ABCD

N=70 - Act - Res
N=70 - NoRes

N=70 - Res
N=90 - Act - Res

N=90 - NoRes
N=90 - Res

N=110 - Act - Res
N=110 - NoRes

N=110 - Res

87.1% 88.9% 90.8% 87.9%
92.7% 85.0% 84.9% 90.1% 92.7% 93.0% 92.4% 88.5% 92.2%
89.8% 92.3% 91.3% 91.3% 92.4% 85.9% 93.7% 91.7% 91.4% 96.5% 96.3% 96.1%
54.7% 69.2% 72.2% 71.2%
81.4% 68.0% 65.8% 70.4% 77.7% 80.5% 79.6% 63.1% 84.8%
67.1% 67.6% 75.7% 76.8% 87.8% 57.2% 72.5% 71.2% 63.8% 90.7% 91.1% 91.5%
62.9% 41.0% 49.6% 54.7%
63.3% 39.8% 43.5% 51.0% 66.5% 57.5% 65.9% 27.5% 68.8%
51.6% 52.6% 58.8% 48.6% 49.9% 36.2% 55.4% 47.9% 54.6% 84.5% 84.7% 79.7%

Task Brevo1 - Ablation study - Llama(RoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D
original

 Canon-ABCD

 Canon-B

 Canon-ABCD

 Canon-ABCD

N=75 - Act - Res

N=75 - NoRes

N=75 - Res

N=100 - Act - Res

N=100 - NoRes

N=100 - Res

N=125 - Act - Res

N=125 - NoRes

N=125 - Res

54/99% 87/99% 86/99% 12/96%
1/17% 1/1% 1/18% 9/97% 10/98% 75/99% 1/94% 30/99% 36/92%

99/100% 99/100% 99/100% 99/100% 82/98% 98/100% 99/100% 83/99% 38/96% 99/100% 93/100% 100/100%
90/100% 62/96% 1/37% 58/98%
1/58% 1/1% 36/93% 65/97% 19/94% 1/77% 2/99% 21/96% 50/95%

97/100% 99/100% 98/100% 99/100% 99/100% 96/100% 96/100% 93/100% 42/98% 97/100% 97/100% 99/100%
1/98% 24/97% 1/80% 1/81%
1/1% 1/1% 1/58% 1/82% 1/9% 60/98% 1/97% 1/50% 1/77%

87/99% 98/100% 96/100% 93/99% 96/100% 89/99% 93/99% 90/100% 66/99% 98/100% 96/100% 99/100%

Task Depo2(K=16, k=16/8) - Ablation study - Llama(RoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D
original

 Canon-ABCD

 Canon-B

 Canon-ABCD

 Canon-ABCD

N=30 - Act - Res
N=30 - NoRes

N=30 - Res
N=40 - Act - Res

N=40 - NoRes
N=40 - Res

N=50 - Act - Res
N=50 - NoRes

N=50 - Res

96.3% 95.3% 96.6% 95.1%
93.0% 84.7% 89.6% 91.0% 92.6% 95.0% 94.4% 96.0% 92.9%
96.3% 95.7% 95.4% 96.5% 97.0% 94.6% 95.9% 96.5% 95.9% 97.1% 96.3% 97.3%
91.1% 88.0% 91.4% 91.9%
89.1% 73.7% 77.0% 81.8% 83.7% 91.9% 88.0% 88.0% 85.6%
91.7% 89.8% 90.5% 91.8% 92.6% 87.0% 92.2% 90.6% 92.9% 93.5% 89.2% 95.5%
88.7% 77.3% 86.0% 84.8%
81.7% 67.9% 62.5% 65.6% 78.3% 84.0% 80.4% 81.4% 80.0%
82.3% 82.5% 87.8% 87.2% 88.7% 77.8% 84.5% 83.1% 85.7% 88.1% 85.9% 91.7%

Task Brevo2 - Ablation study - Llama(RoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D
original

 Canon-ABCD

 Canon-B

 Canon-ABCD

 Canon-ABCD

L=10 - Act - Res
L=10 - NoRes

L=10 - Res
L=13 - Act - Res

L=13 - NoRes
L=13 - Res

L=16 - Act - Res
L=16 - NoRes

L=16 - Res

99.0% 91.8% 77.7% 83.8%
92.1% 97.9% 94.5% 85.9% 98.6% 88.9% 50.3% 85.2% 94.3%
96.7% 97.7% 99.5% 95.8% 97.6% 97.5% 98.6% 83.3% 90.3% 99.6% 99.7% 99.6%
85.3% 69.5% 80.7% 66.4%
69.7% 95.8% 53.7% 79.4% 95.7% 32.9% 45.6% 46.5% 90.1%
83.8% 97.5% 98.8% 88.6% 98.0% 90.3% 87.7% 75.9% 77.6% 99.2% 99.1% 96.3%
47.7% 35.2% 47.9% 58.3%
57.8% 50.4% 40.1% 27.4% 78.0% 18.2% 26.9% 41.6% 53.9%
88.1% 86.4% 83.0% 78.3% 83.2% 79.4% 79.8% 60.9% 53.5% 85.3% 97.9% 88.0%

Task Mano - Ablation study - Llama(RoPE)

Canon-A

Canon-ABC

Canon-ABCD

Canon-AC

Canon-ACD
Canon-B

Canon-BD
Canon-C

Canon-D
original

 Canon-ABCD

 Canon-B

 Canon-ABCD

 Canon-ABCD

cfg3f - Act - Res
cfg3f - NoRes

cfg3f - Res
cfg3j - Act - Res

cfg3j - NoRes
cfg3j - Res

cfg3k - Act - Res
cfg3k - NoRes

cfg3k - Res

97.7% 97.6% 98.1% 97.8%
93.6% 83.1% 84.7% 95.7% 94.8% 95.1% 95.9% 97.6% 94.1%
97.5% 97.7% 98.3% 98.2% 98.5% 97.5% 97.9% 97.8% 97.5% 98.1% 97.6% 97.5%
92.9% 92.4% 93.8% 91.1%
64.0% 55.0% 63.6% 80.3% 82.7% 88.4% 87.7% 90.3% 65.9%
92.4% 94.9% 94.3% 95.1% 93.4% 94.2% 93.3% 93.4% 92.5% 92.6% 91.5% 93.3%
87.0% 84.8% 87.4% 83.3%
42.4% 23.9% 43.4% 53.0% 53.1% 72.5% 73.2% 79.1% 35.8%
87.5% 89.8% 86.7% 86.3% 84.7% 89.8% 85.2% 85.1% 85.8% 78.9% 81.1% 84.5%

Task Lano - Ablation study - Llama(RoPE)

Figure 10: Ablation study on 12-layer, 768-dim Transformers—NoPE (top) and RoPE (bottom)—with Canon vari-
ants (A–D), residual links, activation functions, ALiBi, and H-Alibi. Blank entries indicate untested
configs due to resource limits. Additional ablation studies (with more model sizes) are in Figure 26
(RoPE), Figure 28 (NoPE), and Figure 27 (RoPE+Primer) in Appendix D.2.

without adjusting MLP layers. They all strongly outperform Canon-B(no-res) and thus outperform
Primer. This highlights Canon layers’ general role in enhancing horizontal information flow across
architecture sub-layers, independently complementing attention or MLP mechanisms.

Nonlinear activations and computational simplicity. Contrary to prior works (e.g., H3/Mamba),
adding activation functions such as SiLU after the Canon layers does not yield noticeable benefits.
Canon layers effectively inject local context directly into token positions, and nonlinear operations
are sufficiently handled by the attention and MLP blocks (see rows marked “Act” in Figure 10).

Result 4 (Figure 10). Canon layers are lightweight, versatile, and effective enhancements that
integrate seamlessly into Transformers. Key findings:

� Canon-A/B/C/D yield meaningful, cumulative improvements when stacked, and can be flex-
ibly applied anywhere independent of attention or MLP modifications.

� Residual connections in Canon design are essential for stable, efficient training.

� Adding nonlinear activations (e.g., SiLU) provide no measurable benefit, simplifying design.

(This differs from prior works: we show where to insert Canon layers, how to stabilize them,
and why they matter.)

16

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

2-34-2
8-2

5-34-3
6-3

5-4

6-2

2-8 6-65-63-6

10-62-8 5-6

2-3

5-4

5-34-3

8-2

3-6

8-88-6

6-3

12-6

4-2
6-2

6-6

4-3
5-3

10-6

6-3

6-6

12-6
10-8

2-20

8-6
16-8

3-6

8-8

2-8
5-6

5-4

5-62-83-6

3-20

10-8

6-6

8-6

12-6 2-20

16-8
10-6

8-16
8-8 6-20

4-20

8-8 10-8

3-20

8-6

10-6

4-20

6-6

12-6

8-16

2-20
16-8

6-24
6-20

20-16
12-16

8-24

24-16
12-24

8-8

12-6

10-8

20-20
24-20

2-20

12-16

16-8

6-24
4-20 8-16

6-20

8-24

3-20

20-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-22-3

6-3
6-65-4 3-64-3

2-85-3
8-2

5-6

4-2

5-3

6-6

6-3

5-4
3-6

10-6

8-2

2-8

4-3

8-6

4-2

5-6

2-36-2

12-6 8-8
5-3

10-6 8-8

4-3

12-65-6
10-8

2-8
5-4

16-8

6-3

8-6
3-6

2-206-6

6-20
8-16

3-6

2-20
3-20

4-20

6-6

16-8
8-6

12-6

5-6

10-810-6

2-8

8-8

8-8

12-16

12-6

6-6

3-20
4-20

10-8

8-6

8-24
6-24

20-16

10-6

8-16
2-20

16-8
6-20

24-16

12-6

12-16
12-24

8-8
10-8

20-16
20-20

2-20

24-20

16-8

3-20

6-24
8-244-20

8-16
6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - GPT2(RoPE) - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2
2-3 8-26-2

5-34-34-2

2-3 6-2 8-2

4-3
5-3 6-3

5-4

4-2

2-3 6-2 8-2

4-3
5-3 6-3

5-4
3-6 2-8 5-6

2-3 8-26-2

4-3 5-3 6-3

5-4
3-6

2-8
5-6

6-6
10-68-6

12-6

5-4

6-3

3-6

5-3

2-8

5-6
6-6 8-6

10-6
10-88-8

12-6

2-20
5-6

8-6
2-8

3-6

5-4

6-6

8-8

10-810-6 12-6
16-8

3-20
4-202-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - 32-MoE - Llama(RoPE)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

2-3
6-2

8-2
4-3

5-3
6-3 5-4 3-6 2-8 5-6 6-6

2-3

4-2

5-3
4-3

8-2

6-3

12-65-4
3-6

6-2

5-6 6-6
10-68-62-8 8-8

4-3

10-65-6

5-4
6-3

3-6

5-3

12-6
2-20

10-8
16-86-6 8-6

2-8

8-8
3-6

10-6

2-20

2-8

5-6

8-8
3-20

6-6
8-6

16-8
6-2012-6

8-16
4-2010-8

8-66-6

10-6

8-812-6

4-20
10-8

2-20
16-8

3-20
8-16

6-20
12-16

6-24
20-16

8-24

8-24

12-6
8-8

20-16

10-8

12-24
24-16

20-20
24-20

12-16
6-24

2-20

16-8

4-203-20

8-16
6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-6

4-2

2-3

5-3
5-65-4

6-2

6-3
2-8

8-2

3-64-3

2-3
4-2

6-2

8-2

5-4
6-3

4-3

12-6

5-3

3-6 8-86-62-8
10-65-6 8-6

4-3

2-205-6
10-6

3-6

6-6
12-68-6 8-8

5-3

2-8

5-4

10-8
16-8

6-3

2-8

10-6
12-6

8-16

6-6

6-20
4-20

8-6

8-8

5-6

3-6

10-8
16-8

3-20
2-20

6-20

8-6

8-24

6-6

10-6

2-20
6-24

4-20
8-8

20-16
8-1610-8

12-16

12-6

16-8
3-20

16-8

8-8

8-16

2-20
10-8

12-6

6-204-20
3-20

6-24
20-16

8-24
24-16

12-16
12-24

20-20
24-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - GPT2(RoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2 2-3
6-2 8-2 4-3 5-3

8-22-3 6-2

5-44-3

4-2

5-3 6-36-2 8-2

4-3

2-3
4-2

5-46-3
3-6

5-3

5-62-8

2-3

6-2
8-2

6-3

12-6

5-4

5-34-3

3-6

6-62-8
8-6

10-65-6

5-3

2-20

6-3

2-8

5-6

5-4

3-6

6-6
8-6

12-6
10-6 8-8

10-8

3-20

5-4

3-6

16-8
4-20

5-6
2-8

8-6
6-6

10-6

8-812-6

10-8 2-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - 32-MoE - Llama(RoPE) + Canon-ABC(r)

Figure 11: Evaluation of knowledge capacity (Capo) across architectures, measured as bits per parameter. The first
row represents baseline models, while the second row shows improvements with Canon layers added.
Conclusion: Canon layers enhance knowledge storage for architectures that are slower to train, such as
gated MLP and MoE, mitigating the capacity gap between gated and standard MLP as identified in [7].

5.4 MLP and Mixture-of-Experts

Our synthetic playground provides a valuable framework to evaluate broader architectural choices.

Gated vs. standard MLPs. Gated MLPs [54], which replace standard MLP operations V σ(Wx)
by V (σ(W1x) · (W2x)), improve expressiveness and parameter efficiency. Widely adopted by large-
scale models (e.g., PaLM [15], Llama [61, 62], Mistral [32]), gated MLPs have become standard
design choices. However, [7] found that gated MLP reduces knowledge capacity by about 30% in
limited-exposure scenarios (e.g., 100-exposure Task Capo) due to slower convergence.

Thus, what is the best tradeoff? Our experiments (Figure 20) confirm gated MLP has slight
advantage over standard MLP (“GPT2-style”) on reasoning-heavy tasks, showing noticeable im-
provements on knowledge manipulation (Mano) and smaller gains on reasoning breadth (Brevo).
Thus, replacing gated MLP with standard MLP may not be the best choice. However, keep in mind
that adding Canon layers already partially mitigates gated MLP’s capacity loss (recall Result 2),
due to improving training dynamics and speed, recovering about half of its lost capacity.

Mixture-of-Experts. Mixture-of-Experts (MoE) [22, 55] enhances parameter efficiency by re-
placing dense MLPs with multiple parallel “experts,” selectively routing tokens to fewer active
experts. While MoE achieves good scalability (particularly on knowledge capacity) and compet-
itive inference-time performance, it suffers from significantly slower knowledge acquisition speed
during training. For example, a 32-expert transformer may acquire 10× less knowledge in the same
100-exposure regime (mimicking rare knowledge) compared to dense models (Figure 11). Could
Canon layers mitigate this due to their improved training dynamics?

Integrating Canon layers with MoE, however, poses a challenge. Canon-D relies on neighboring
tokens’ hidden states, conflicting with MoE’s independent token-wise expert dispatching. Adapting
Canon-D to MoE would require complex engineering. To avoid such complexity, we test Canon-
ABC layers alone, which already significantly accelerate MoE knowledge acquisition and improve
bit-per-parameter efficiency (Figure 11), recovering at least half of the MoE-induced capacity loss.

MLP with Squared ReLU. The Primer [57] paper proposes using ReLU2 as the activation
function in standard MLPs, reporting improved performance over gated MLPs (e.g., SwiGLU)
on real-world data. They also claim this gain exceeds that of Canon-B(no-res), which they refer

17

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

1/16% 0/18% 0/10% 2/30%
0/5% 0/5% 0/7% 0/15%
0/0% 0/3% 0/2% 0/8%

Task Depo1(K=4, k=4/2)
GLA - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

16/72% 25/74% 62/93% 58/93%
6/32% 10/49% 12/51% 41/83%
8/38% 3/26% 11/52% 12/55%

Task Depo1(K=4, k=4/2)
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/0% 0/1% 0/1% 0/15%
0/0% 0/0% 0/0% 0/2%
0/2% 0/1% 0/0% 0/0%

Task Depo1(K=4, k=4/2)
GLA - conv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

2/26% 5/33% 1/43% 8/45%
0/9% 1/14% 1/14% 1/18%
0/10% 1/9% 0/10% 1/16%

Task Depo1(K=4, k=4/2)
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

20/70% 47/90% 9/76% 20/57%
9/42% 5/41% 3/50% 3/33%
2/16% 12/41% 3/28% 2/33%

Task Depo1(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/3% 3/13% 2/14%
2/10% 1/1% 2/19% 1/18%
1/10% 1/2% 1/2% 1/13%

Task Depo2(K=4, k=4/2)
GLA - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

47/79% 54/81% 82/95% 73/92%
23/53% 36/85% 53/89% 39/82%
14/46% 9/29% 57/85% 46/77%

Task Depo2(K=4, k=4/2)
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/7% 1/1% 2/19% 1/3%
1/5% 1/1% 1/2% 1/10%
1/1% 1/1% 2/14% 1/3%

Task Depo2(K=4, k=4/2)
GLA - conv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

12/65% 14/60% 16/72% 17/83%
3/27% 1/7% 1/21% 4/27%
7/35% 20/50% 3/20% 4/40%

Task Depo2(K=4, k=4/2)
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

75/95% 91/98% 74/95% 90/98%
55/85% 86/97% 57/90% 86/97%
46/83% 69/91% 41/81% 67/91%

Task Depo2(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

4.7% 4.7% 4.1% 24.9%
0.9% 0.8% 1.7% 1.0%
0.2% 0.6% 0.9% 1.3%

Task Brevo1
GLA - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

93.8% 93.6% 95.7% 97.2%
63.5% 83.5% 91.1% 88.4%
49.6% 55.9% 59.5% 72.1%

Task Brevo1
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.5% 0.8% 2.7% 2.6%
0.0% 0.0% 0.4% 2.8%
0.1% 0.0% 0.4% 0.9%

Task Brevo1
GLA - conv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.3% 1.0% 0.6% 0.5%
0.1% 0.5% 0.6% 0.5%
0.3% 0.3% 0.1% 0.4%

Task Brevo1
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

17.0% 40.1% 71.4% 56.5%
11.5% 87.2% 48.1% 24.2%
2.9% 8.5% 10.8% 26.2%

Task Brevo1
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

13.4% 38.6% 19.8% 54.9%
2.1% 22.2% 2.1% 7.3%
0.8% 1.4% 3.4% 1.4%

Task Brevo2
GLA - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

80.5% 86.8% 90.8% 91.8%
59.3% 70.7% 28.3% 85.9%
20.0% 0.9% 32.6% 41.0%

Task Brevo2
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

3.1% 0.4% 31.2% 45.6%
0.3% 0.1% 1.3% 40.9%
0.3% 0.2% 1.1% 1.9%

Task Brevo2
GLA - conv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

8.1% 57.8% 28.5% 44.9%
1.9% 10.6% 1.6% 44.2%
0.2% 3.3% 0.7% 3.2%

Task Brevo2
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

93.5% 92.8% 86.3% 50.4%
66.6% 80.9% 46.4% 4.8%
17.8% 0.6% 22.3% 2.7%

Task Brevo2
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

56.6% 51.6% 74.5% 61.7%
26.5% 58.0% 34.5% 41.5%
23.5% 50.3% 46.2% 17.5%

Task Mano
GLA - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.4% 99.5% 99.5% 97.8%
70.9% 97.0% 87.7% 97.9%
54.1% 83.3% 43.8% 65.6%

Task Mano
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

9.2% 7.4% 7.7% 13.2%
7.4% 8.5% 7.4% 7.2%
7.4% 7.3% 7.3% 7.5%

Task Mano
GLA - conv1d

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.9% 75.2% 65.4% 66.2%
68.2% 52.4% 44.9% 48.9%
51.7% 41.8% 32.6% 34.1%

Task Mano
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

91.4% 97.1% 96.3% 98.8%
81.5% 95.3% 87.9% 88.0%
52.8% 64.5% 69.9% 94.0%

Task Mano
Mamba2 - original (conv1d)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

8-2

2-3

4-3
6-2

5-46-35-3
3-6 2-8 6-65-6

2-3

8-2
6-2

4-2

3-6
5-3

4-3

5-46-3

10-62-8 6-6 8-6 8-85-6
12-6

16-8

4-3
5-3 6-3

5-6
2-85-4

6-6
3-6

8-6
12-6

10-6
2-208-8

10-82-8

12-6

3-6

8-8

6-65-6

8-6

2-20
10-8

16-810-6
3-20

4-20
8-16

6-20

4-20
3-20

6-20

8-6

12-6

2-20

16-8
8-8

8-16

6-6

10-8

10-6

12-16
6-24

8-24
20-16

20-16
24-16

12-24
20-20

24-20

12-6

8-8
10-8 2-20

16-8
3-20

12-16
6-24

8-244-20
8-16

6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - GLA - original

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

8-2

2-3
6-2

5-46-34-3
5-3

3-6 2-8 6-65-6

5-3

5-4

4-2
2-3

6-2

4-3

3-6

8-2

6-3

2-8 8-88-66-65-6
12-6

10-6

16-8

4-3
5-3

6-3

3-6

5-6

5-4

6-62-8

12-68-6
10-6 8-8

2-20
10-8

12-6

3-6

8-8

5-6

6-6
8-6

2-8

2-20
10-810-6

16-8
3-20

4-20
8-16

6-20

3-20
6-20

10-6

2-20

8-6

8-8

6-6

16-8
8-16

12-6

10-8
4-20

12-16
6-24

8-24
20-16

8-24
20-16

24-16
12-24

20-20
24-20

12-6

8-8

10-8
2-20

16-8
3-20

12-16
6-24

4-20
8-16

6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - GLA - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

5-6
8-2

6-6

2-3

3-64-3 5-3

6-2

6-3 5-4 2-8

4-2
2-3

8-2

12-65-4
6-65-6

10-6
6-35-3

6-2

8-62-8 8-83-6

4-3

6-3
4-3

5-6
2-208-8

16-82-8
5-4

6-6
12-6

3-6

10-88-6
10-6

5-3

5-6

8-6

12-610-6

3-6

6-6

2-20
16-8

4-20
8-16

6-208-8
10-8

2-8

3-20

2-20

6-6

10-6

8-16

8-6

8-812-6

16-810-8

3-20
4-20

6-20
20-16

12-16
8-24

6-24

6-20
6-24

12-6

24-16

16-8

8-8

20-164-20
8-16

2-20

3-20

8-24
12-16

10-8

12-24

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Mamba2 - noconv1d

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-64-3
2-3

8-2

4-2

6-2

5-46-3 5-62-85-3 3-6

4-2

6-2

6-35-3
4-3

5-4 3-6

8-2

8-82-8 6-6 8-6
10-6

12-65-6

2-3

6-62-83-6
8-65-6

10-8
16-8

2-208-8
12-6

4-3

5-4
6-3

5-3

10-6

4-20
8-16

10-8
16-8

3-20
2-2010-6

12-6
6-208-88-66-6

2-8

5-6

3-6

4-20
12-6

8-16

8-6

6-20
16-8

12-16
2-20

8-8

3-20

6-6

6-2410-8
8-24

10-6

20-16
12-6

8-8
10-8

16-8
2-20

8-16
6-203-20

4-20
12-16

8-24
24-20

6-24
20-20

20-16
12-24

24-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Mamba2 - original(conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

23.9% 40.1% 46.7% 74.6%
3.3% 6.6% 2.5% 13.8%
9.9% 17.1% 9.5% 16.9%

Task Lano
GLA - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.0% 90.6% 89.5% 93.3%
70.3% 82.1% 72.9% 81.9%
44.9% 63.1% 52.8% 71.0%

Task Lano
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

81.8% 90.2% 83.8% 92.0%
45.6% 75.8% 58.7% 81.0%
34.8% 53.2% 39.6% 63.7%

Task Lano
GLA - conv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

44.8% 33.1% 56.6% 41.7%
2.1% 5.2% 2.5% 8.1%
11.0% 12.8% 12.5% 12.5%

Task Lano
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.2% 93.5% 91.1% 94.1%
69.1% 82.2% 78.2% 84.2%
43.3% 65.3% 50.9% 70.3%

Task Lano
Mamba2 - original (conv1d)

Figure 12: Columns 1, 2, 3, 5: Canon drastically improves GLA, making it comparable to Mamba2 (Result 6+7).
Columns 1, 4, 5: Removing conv1d reduces Mamba2’s performance back to match GLA (Result 8).
Remark. Synthetic results here predict similar trends in real-life experiments (Result 12 and Figure 17).

to as “Multi-DConv-Head Attention.” In our synthetic playground (see Figure 21), we confirm
that ReLU2 slightly improves standard MLPs (though not necessarily outperforming gated MLPs,
consistent with recent findings [77]), while applying ReLU2 to gated MLPs degrades performance.
However, these effects are negligible compared to the gains provided by Canon layers.

Result 5 (Figure 11+20+21). Key insights for MLP and MoE architectures:

� Gated MLP slightly outperforms standard MLP (especially on Mano).

� Gated MLP reduces knowledge capacity (Capo); Canon layers partially recover this loss.

� ReLU2 activation slightly improves standard MLP but degrades performance in gated MLP.

� Canon-ABC substantially improves MoE knowledge acquisition and bit-per-param capacity.

6 When Linear Attention Meets Canon

Linear attention models reduce compute by compressing sequences into fixed-length representations,
gaining popularity for their scalability and efficient handling of long contexts. We examine Canon
layers integrated into Gated Linear Attention (GLA) [68]. GLA, like most linear attention models,
compresses past tokens via a (gated) averaging mechanism. While efficient, gated averaging often
diminishes the influence of nearby tokens—crucial for nearly all tasks. Canon layers explicitly
introduce horizontal localized context flow, addressing this limitation and enhancing reasoning.

18

As shown in Figure 12, integrating Canon-ABCD layers substantially improves GLA perfor-
mance across all benchmarks, transforming it from a weak baseline into a strong competitor.
Despite its simpler design, GLA+Canon matches—and sometimes exceeds—Mamba2. Specifi-
cally, GLA+Canon significantly surpasses Mamba2 on reasoning breadth (Brevo1) and trails only
slightly on knowledge manipulation. Our later Section 9 further confirms this upward trajectory in
real-world academic-scale pretraining, across essentially all standard evaluation metrics.

Result 6 (Figure 12). Adding Canon layers:
� Skyrockets performance: GLA dramatically improves, increasing reasoning depth from 1-hop
to 4-hop, doubling reasoning breadth, and gaining over 2× in knowledge manipulation length.

� GLA matches or surpasses Mamba2: Despite GLA’s simpler design, these enhancements bring
it on par or better compared to Mamba2, significantly surpassing it on task Brevo1.

Following GLA’s original publication, its authors introduced a conv1d-based enhancement —
corresponding roughly to a partial Canon-B implementation with activation but without residual
connections. Our ablation study (Figure 12+23) reveals minimal benefit of this variant: it yields
no improvement on reasoning tasks (Depo, Brevo), slightly worsens knowledge manipulation
(Mano), and only moderately improves structural reasoning (Lano). By contrast, the full Canon-
ABCD configuration consistently and significantly enhances performance on all these tasks. For
clarity, when Canon layers are enabled in GLA, its built-in conv1d is disabled.

This highlights that merely altering attention projections (i.e. Canon-B alone) is insufficient.
Instead, fully integrating localized composition across all sub-layers (Canon-ABCD) is essential for
unlocking GLA’s potential. To further confirm robustness, we evaluated a variant of GLA with a
1+elu(x) feature map instead of the identity map. Canon layers produced similarly strong improve-
ments here, illustrating their broad, architecture-agnostic applicability across different feature-map
choices in linear attention models.

Result 7 (Figure 12+23). Residual links are essential for Canon layers in GLA. Partial Canon-B
implementations (e.g., conv1d without residuals) provide limited gains. Full Canon-ABCD with
residuals can unlock GLA’s performance across all tasks, even with non-linear feature maps.

7 When Mamba Meets Canon

While Mamba2 is widely recognized as a state-space model (SSM), it quietly incorporates an auxil-
iary non-linear conv1d operation in each SSM block.17 This conv1d mechanism, first introduced in
the H3 model [23] as shift-SSM, effectively acts as a partial Canon-B layer: it performs horizontal
mixing on selected coordinates, includes non-linear activation, and omits residual connections.

Surprisingly, this built-in conv1d plays a central role in Mamba2’s performance, often surpass-
ing the impact of its SSM design. Disabling it sharply degrades performance, reducing Mamba2
to levels comparable to GLA on both synthetic tasks (see Figure 12 for Mamba2, Figure 13 for
Mamba2(mlp)) and real-world datasets (see Section 9). This raises a question: is Mamba2’s
strength primarily due to the Canon-like conv1d rather than its state-space formulation?

To isolate the contributions clearly, we replaced Mamba2’s conv1d layer with Canon layers:
� For Mamba2, we use Canon-AB as the full-score configuration: Canon-A is placed before the

SSM block with dimension m = d, and Canon-B placed within the SSM block with dimension

17Mamba1 includes this as well, but since Mamba2 consistently outperforms it, we only report Mamba2 results.

19

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

20/70% 47/90% 9/76% 20/57%
9/42% 5/41% 3/50% 3/33%
2/16% 12/41% 3/28% 2/33%

Task Depo1(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

5/49% 6/53% 29/77% 6/60%
1/34% 1/22% 3/33% 2/29%
1/14% 0/12% 1/30% 1/17%

Task Depo1(K=4, k=4/2)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/18% 1/17% 1/19% 1/27%
1/12% 1/17% 0/13% 1/13%
0/5% 0/7% 0/8% 0/9%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

12/65% 29/67% 24/74% 43/84%
4/35% 12/46% 13/62% 13/61%
1/22% 13/56% 7/33% 10/42%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

40/79% 6/76% 18/67% 36/74%
10/49% 5/52% 2/28% 2/79%
1/23% 1/28% 1/18% 1/42%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

75/95% 91/98% 74/95% 90/98%
55/85% 86/97% 57/90% 86/97%
46/83% 69/91% 41/81% 67/91%

Task Depo2(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

67/96% 90/99% 79/96% 85/97%
42/85% 53/91% 56/90% 50/85%
30/76% 68/93% 23/77% 32/80%

Task Depo2(K=4, k=4/2)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/9% 3/23% 2/25% 8/46%
1/4% 15/54% 1/3% 1/9%
1/8% 2/27% 1/3% 1/10%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

18/61% 80/95% 30/86% 69/89%
17/63% 47/83% 17/55% 42/82%
5/39% 46/85% 10/41% 24/75%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

86/96% 91/99% 92/98% 74/95%
62/95% 67/97% 44/91% 74/97%
37/73% 66/88% 53/90% 53/90%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

17.0% 40.1% 71.4% 56.5%
11.5% 87.2% 48.1% 24.2%
2.9% 8.5% 10.8% 26.2%

Task Brevo1
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

76.5% 81.2% 79.4% 90.5%
66.7% 59.2% 64.1% 83.1%
23.8% 23.7% 46.0% 68.4%

Task Brevo1
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.3% 0.3% 0.4% 0.5%
0.3% 0.1% 0.5% 0.2%
0.2% 0.0% 0.2% 0.3%

Task Brevo1
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

3.7% 80.1% 50.1% 72.4%
0.3% 0.5% 3.8% 4.8%
0.1% 0.0% 1.1% 1.2%

Task Brevo1
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

70.6% 64.7% 65.0% 87.8%
5.7% 21.2% 13.0% 55.1%
2.1% 0.4% 8.7% 41.1%

Task Brevo1
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

93.5% 92.8% 86.3% 50.4%
66.6% 80.9% 46.4% 4.8%
17.8% 0.6% 22.3% 2.7%

Task Brevo2
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

94.1% 96.1% 95.0% 97.2%
80.2% 88.3% 68.3% 79.1%
63.9% 70.2% 55.9% 35.1%

Task Brevo2
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

8.2% 39.1% 3.7% 31.0%
0.6% 12.6% 1.2% 10.8%
0.4% 1.3% 0.9% 1.8%

Task Brevo2
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

50.8% 95.6% 68.1% 3.4%
12.5% 67.0% 14.5% 0.5%
3.3% 12.4% 4.0% 0.5%

Task Brevo2
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

83.7% 85.2% 65.6% 94.1%
52.6% 34.1% 15.6% 84.2%
13.2% 10.2% 14.0% 53.1%

Task Brevo2
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

91.4% 97.1% 96.3% 98.8%
81.5% 95.3% 87.9% 88.0%
52.8% 64.5% 69.9% 94.0%

Task Mano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.9% 99.3% 99.6% 99.5%
98.9% 99.3% 99.3% 99.2%
98.6% 99.2% 99.0% 98.8%

Task Mano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

73.7% 78.8% 68.2% 66.9%
71.1% 62.3% 51.1% 47.5%
31.2% 28.4% 28.6% 37.2%

Task Mano
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

96.5% 95.1% 95.2% 95.7%
79.9% 84.8% 88.0% 91.8%
74.4% 90.1% 72.3% 87.4%

Task Mano
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

99.2% 99.2% 98.4% 99.4%
98.1% 98.9% 98.2% 98.4%
93.1% 97.2% 95.4% 98.0%

Task Mano
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.2% 93.5% 91.1% 94.1%
69.1% 82.2% 78.2% 84.2%
43.3% 65.3% 50.9% 70.3%

Task Lano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

83.9% 90.6% 85.9% 86.4%
63.9% 77.8% 73.1% 68.9%
46.4% 57.4% 46.1% 51.9%

Task Lano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

42.0% 47.7% 28.5% 40.3%
2.6% 9.9% 5.0% 5.9%
9.6% 17.8% 12.3% 9.2%

Task Lano
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

83.8% 92.2% 86.8% 92.2%
45.5% 72.0% 54.2% 74.3%
32.7% 50.0% 35.3% 46.1%

Task Lano
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

73.8% 85.7% 77.9% 81.5%
38.2% 60.2% 41.8% 64.3%
32.9% 41.4% 33.5% 41.3%

Task Lano
Mamba2(mlp) - Canon-ABCD(no-res)

Figure 13: Mamba and Mamba(mlp) architectures without conv1d, with conv1d (original), and with full-score Canon.
Note: Mamba - noconv1d and Mamba(mlp) - noconv1d perform similarly poorly (Figure 12).

m = 4d + 144.18 In contrast, Mamba2’s original conv1d applies only to a subset of 2d + o(d)
dimensions with non-linear activation.

� For Mamba2(mlp), which alternates SSM blocks and gated MLP layers, we introduce Canon-C
and Canon-D before and within the MLP sub-layers, respectively, together forming the full
Canon-ABCD configuration.

As demonstrated in Figure 13, fully replacing the original conv1d with Canon layers consis-
tently improves Mamba2, particularly on knowledge manipulation (Mano) and reasoning breadth
(Brevo), surpassing even its original implementation.

Comparing Figure 12 with Figure 13, we conclude that the majority of Mamba2’s performance
boost comes from Canon-style horizontal information flow (either via original conv1d or our full
Canon layers), not from its state-space formulation itself. Introducing Canon layers provides addi-
tional incremental gains, enabling Mamba2 to slightly exceed GLA—but the intrinsic state-space
mechanism contributes comparatively limited improvement.

Result 8 (Figure 12+13). Key observations on Mamba2:

� Mamba2 contains an internal non-linear conv1d mechanism (a partial Canon-B) within its
SSM blocks, which contributes more substantially to performance than its state-space design.
Removing it greatly reduces performance, limiting Mamba2 to GLA-level capabilities.

� Replacing the internal conv1d with full Canon layers further improves performance, partic-
ularly in knowledge manipulation (Mano) and reasoning breadth (Brevo).

(Also holds for Mamba1 [26]; in our playground Mamba1 is consistently outperformed by Mamba2.)

18The additive 144 arises from the Mamba2 specifications: ssm state size = 64 and num heads = 16. We also
tested num heads = 8 and the results only went worse.

20

Canon-AB
Canon-B

mimetic

noconv1d

original (c
onv1d)

N=225 - NoRes

N=225 - Res

N=300 - NoRes

N=300 - Res

N=375 - NoRes

N=375 - Res

6/60% 39/89% 13/60% 8/45% 20/57%

34/83% 38/91%

2/29% 23/63% 6/36% 1/18% 3/33%

7/50% 12/58%

1/17% 3/33% 5/28% 1/16% 2/33%

2/25% 6/33%

Task Depo1(K=4, k=4/2) - Ablation study - Mamba2

Canon-AB
Canon-B

mimetic

noconv1d

original (c
onv1d)

N=70 - NoRes
N=70 - Res

N=90 - NoRes
N=90 - Res

N=110 - NoRes
N=110 - Res

90.5% 90.5% 76.5% 0.5% 56.5%
83.3% 0.1%
83.1% 70.2% 1.3% 0.5% 24.2%
29.6% 0.5%
68.4% 27.3% 7.7% 0.4% 26.2%
3.7% 3.8%

Task Brevo1 - Ablation study - Mamba2

Canon-AB
Canon-B

mimetic

noconv1d

original (c
onv1d)

L=10 - NoRes
L=10 - Res

L=13 - NoRes
L=13 - Res

L=16 - NoRes
L=16 - Res

99.5% 99.9% 53.0% 66.2% 98.8%
91.4% 95.4%
99.2% 99.7% 34.6% 48.9% 88.0%
68.8% 79.5%
98.8% 99.6% 10.1% 34.1% 94.0%
69.7% 88.2%

Task Mano - Ablation study - Mamba2

Canon-AB
Canon-B

mimetic

noconv1d

original (c
onv1d)

N=75 - NoRes

N=75 - Res

N=100 - NoRes

N=100 - Res

N=125 - NoRes

N=125 - Res

85/97% 86/97% 25/55% 17/83% 90/98%

94/99% 76/95%

50/85% 63/88% 33/75% 4/27% 86/97%

86/95% 52/92%

32/80% 51/88% 5/42% 4/40% 67/91%

67/90% 66/90%

Task Depo2(K=4, k=4/2) - Ablation study - Mamba2

Canon-AB
Canon-B

mimetic

noconv1d

original (c
onv1d)

N=30 - NoRes
N=30 - Res

N=40 - NoRes
N=40 - Res

N=50 - NoRes
N=50 - Res

97.2% 75.9% 2.2% 44.9% 50.4%
13.3% 39.1%
79.1% 56.1% 0.9% 44.2% 4.8%
0.5% 1.5%
35.1% 1.1% 0.6% 3.2% 2.7%
0.8% 1.0%

Task Brevo2 - Ablation study - Mamba2

Canon-AB
Canon-B

mimetic

noconv1d

original (c
onv1d)

cfg3f - NoRes
cfg3f - Res

cfg3j - NoRes
cfg3j - Res

cfg3k - NoRes
cfg3k - Res

86.4% 88.2% 91.8% 41.7% 94.1%
94.2% 93.1%
68.9% 80.4% 37.7% 8.1% 84.2%
83.8% 84.6%
51.9% 50.8% 38.7% 12.5% 70.3%
73.1% 60.5%

Task Lano - Ablation study - Mamba2

Canon-ABCD

Canon-ACD
Canon-B

Canon-BD

noconv1d

original (c
onv1d)

N=225 - NoRes

N=225 - Res

N=300 - NoRes

N=300 - Res

N=375 - NoRes

N=375 - Res

36/74% 63/92% 26/85% 53/85% 1/27% 43/84%

49/84% 42/78% 21/61% 40/90%

2/79% 36/79% 30/76% 25/86% 1/13% 13/61%

19/79% 13/69% 11/47% 29/75%

1/42% 21/84% 1/27% 16/73% 0/9% 10/42%

18/54% 8/47% 11/66% 43/73%

Task Depo1(K=4, k=4/2) - Ablation study - Mamba2(mlp)

Canon-ABCD

Canon-ACD
Canon-B

Canon-BD

noconv1d

original (c
onv1d)

N=70 - NoRes
N=70 - Res

N=90 - NoRes
N=90 - Res

N=110 - NoRes
N=110 - Res

87.8% 79.8% 84.6% 18.7% 0.5% 72.4%
92.4% 79.6% 72.7% 2.1%
55.1% 4.7% 18.1% 62.6% 0.2% 4.8%
7.8% 1.3% 1.9% 8.1%
41.1% 5.2% 4.5% 31.1% 0.3% 1.2%
3.7% 8.6% 0.4% 6.2%

Task Brevo1 - Ablation study - Mamba2(mlp)

Canon-ABCD

Canon-ACD
Canon-B

Canon-BD

noconv1d

original (c
onv1d)

L=10 - NoRes
L=10 - Res

L=13 - NoRes
L=13 - Res

L=16 - NoRes
L=16 - Res

99.4% 99.7% 99.6% 99.8% 66.9% 95.7%
94.4% 80.2% 91.4% 97.2%
98.4% 99.2% 99.2% 99.4% 47.5% 91.8%
98.6% 66.7% 87.1% 76.0%
98.0% 97.5% 99.2% 98.8% 37.2% 87.4%
80.8% 82.4% 74.9% 40.6%

Task Mano - Ablation study - Mamba2(mlp)

Canon-ABCD

Canon-ACD
Canon-B

Canon-BD

noconv1d

original (c
onv1d)

N=75 - NoRes

N=75 - Res

N=100 - NoRes

N=100 - Res

N=125 - NoRes

N=125 - Res

74/95% 86/97% 91/98% 83/99% 8/46% 69/89%

94/99% 94/99% 77/94% 88/96%

74/97% 86/96% 64/93% 52/93% 1/9% 42/82%

76/97% 85/98% 61/91% 82/96%

53/90% 66/93% 52/90% 42/86% 1/10% 24/75%

53/88% 77/95% 41/75% 73/89%

Task Depo2(K=4, k=4/2) - Ablation study - Mamba2(mlp)

Canon-ABCD

Canon-ACD
Canon-B

Canon-BD

noconv1d

original (c
onv1d)

N=30 - NoRes
N=30 - Res

N=40 - NoRes
N=40 - Res

N=50 - NoRes
N=50 - Res

94.1% 40.6% 15.6% 30.6% 31.0% 3.4%
65.9% 80.7% 19.9% 20.6%
84.2% 4.9% 3.1% 2.4% 10.8% 0.5%
13.5% 2.5% 1.0% 0.9%
53.1% 0.4% 1.8% 0.4% 1.8% 0.5%
4.1% 3.4% 0.6% 0.7%

Task Brevo2 - Ablation study - Mamba2(mlp)

Canon-ABCD

Canon-ACD
Canon-B

Canon-BD

noconv1d

original (c
onv1d)

cfg3f - NoRes
cfg3f - Res

cfg3j - NoRes
cfg3j - Res

cfg3k - NoRes
cfg3k - Res

81.5% 87.3% 91.4% 85.3% 40.3% 92.2%
94.6% 93.6% 90.4% 90.9%
64.3% 70.1% 68.9% 65.1% 5.9% 74.3%
84.3% 84.1% 71.9% 73.7%
41.3% 44.9% 48.9% 44.1% 9.2% 46.1%
66.4% 58.5% 45.0% 53.3%

Task Lano - Ablation study - Mamba2(mlp)

Figure 14: Ablation study of Mamba2 models of 12L768D size with Canon layers, Canon residuals, original non-linear
conv1d, mimetic initialization. Full ablation studies (with additional model sizes, such as the effectiveness
of Canon-ACD) are in Figure 29-30 of Appendix D.2.

7.1 Ablation Studies with Canon Layers

To better understand how Canon layers interact with Mamba, we performed ablation studies varying
the number of sub-layers, residual connections, and initialization schemes.

Residuals on Canon. Residual links on Canon layers exhibited mixed effects. As shown in
Figure 14, enabling residual connections improved hierarchical structural learning (Lano) and
in-context reasoning depth (Depo), while disabling residuals benefited knowledge manipulation
(Mano) and reasoning breadth (Brevo). While selective application of residual links across sub-
layer configurations could optimize performance further, this is beyond the scope of this paper due
to our primary focus on Transformer architectures.

Given Mamba’s significantly weaker recursive reasoning (Depo, Lano) compared to Transform-
ers, but stronger shallow, knowledge-driven reasoning (Mano, Brevo), we recommend disabling
residual links for Canon layers with Mamba. This configuration better aligns with Mamba’s core
strengths. For hybrid architectures combining Mamba with Transformer layers (e.g., Samba [48]),
we recommend optimizing Mamba for these shallow reasoning tasks, while delegating deeper, re-
cursive reasoning (Depo, Lano) to Transformers.

Canon sub-layers. Adding more Canon sub-layers in Mamba2 provided improvements, though
less pronounced than in Transformers. Notably, Mamba2(mlp) with Canon-ACD consistently out-
performed both original Mamba2(mlp) and the Canon-B-only version. This confirms that Canon
layers need not be tied to integration within the SSM block (as in original Mamba) and can also
deliver benefits externally, similar to Transformer setups.

Mimetic initialization. We tested the mimetic initialization scheme proposed for Mamba [63],
previously shown to enhance associative recall and selective copying, thereby improving length

21

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 97/100% 99/100% 100/100%
98/100% 92/99% 95/100% 95/100%
75/99% 97/100% 85/100% 90/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 99/100% 99/100% 100/100%
96/99% 99/100% 99/100% 99/100%
99/100% 99/100% 98/100% 99/100%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

5/49% 6/53% 29/77% 6/60%
1/34% 1/22% 3/33% 2/29%
1/14% 0/12% 1/30% 1/17%

Task Depo1(K=4, k=4/2)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

16/72% 25/74% 62/93% 58/93%
6/32% 10/49% 12/51% 41/83%
8/38% 3/26% 11/52% 12/55%

Task Depo1(K=4, k=4/2)
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 100/100% 97/100% 99/100%
97/100% 99/100% 96/100% 97/100%
85/100% 99/100% 98/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

96/100% 85/99% 86/100% 99/100%
94/100% 86/99% 99/100% 99/100%
90/100% 98/100% 93/100% 96/100%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

67/96% 90/99% 79/96% 85/97%
42/85% 53/91% 56/90% 50/85%
30/76% 68/93% 23/77% 32/80%

Task Depo2(K=4, k=4/2)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

47/79% 54/81% 82/95% 73/92%
23/53% 36/85% 53/89% 39/82%
14/46% 9/29% 57/85% 46/77%

Task Depo2(K=4, k=4/2)
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

83.7% 93.8% 91.3% 96.5%
62.9% 84.5% 81.2% 90.7%
47.9% 82.2% 69.7% 84.5%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.8% 94.4% 91.1% 96.2%
63.9% 85.8% 75.5% 92.2%
42.0% 75.3% 58.2% 84.9%

Task Brevo1
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

76.5% 81.2% 79.4% 90.5%
66.7% 59.2% 64.1% 83.1%
23.8% 23.7% 46.0% 68.4%

Task Brevo1
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

93.8% 93.6% 95.7% 97.2%
63.5% 83.5% 91.1% 88.4%
49.6% 55.9% 59.5% 72.1%

Task Brevo1
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.1% 95.6% 92.2% 97.1%
75.4% 87.7% 80.1% 93.5%
55.1% 82.5% 69.3% 88.1%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.4% 93.2% 89.0% 96.1%
61.2% 84.0% 75.2% 91.7%
40.4% 56.0% 56.3% 79.9%

Task Brevo2
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

94.1% 96.1% 95.0% 97.2%
80.2% 88.3% 68.3% 79.1%
63.9% 70.2% 55.9% 35.1%

Task Brevo2
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

80.5% 86.8% 90.8% 91.8%
59.3% 70.7% 28.3% 85.9%
20.0% 0.9% 32.6% 41.0%

Task Brevo2
GLA - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

8-2

6-6

6-2
4-2

5-3

6-3
5-65-4 3-6

2-3

2-8

4-3

4-2

12-6

8-2

8-6
10-6

2-3

3-6

4-3

6-3
5-4

6-2

6-62-8

5-3

8-85-6

5-34-3

3-6

6-3

12-6
10-86-6

8-6 8-8
5-6

10-6

2-8

5-4

16-8
2-20

6-6

10-6

8-8

4-20

3-6

8-6
5-6

2-8

12-6

3-202-20
16-810-8

8-16
6-20

10-68-6

8-16

8-8

6-6

8-24

12-6

6-20
6-24

12-16

10-8

4-203-2016-8

20-16
2-2010-8

2-20

8-16

3-20

8-8
12-6

4-20
16-8

6-20

20-16
24-16

8-24
6-24

12-16
24-20

12-24
20-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(RoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

4-3
5-46-35-3

3-6 2-8 5-6

6-2 8-2

2-3

6-6

2-3

4-2
6-2

5-65-4
8-83-6

6-3

12-62-8

4-3

5-3

8-2

8-66-6
10-6

3-6

8-85-6

6-3

4-3

12-6
2-20

10-8

2-8

5-3

5-4

6-6
16-88-6

10-6

12-6

3-6 2-8

6-65-6

8-8
8-6

10-6
2-20

3-2010-8
16-8

4-20
8-16 6-2010-6

12-6 8-8

6-6

4-20
6-20

8-6

8-16
2-20

12-16
6-2416-8

3-20
10-8

8-24
20-16

8-8

2-2010-8
12-6

4-20

16-8

8-16
3-20

6-20
24-16

12-16
20-20

12-24
6-24

8-24
24-20

20-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Llama(NoPE) - Canon-ABCD(res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

6-3

4-2

6-2

4-3 5-3 2-83-6
8-2

5-6
2-3

6-65-4

6-22-3

5-4
12-68-6

5-3

4-2

10-66-65-6

8-2

3-6 2-8

4-3

6-3

8-8

16-8

6-3

5-4

2-208-8

4-3
5-3

6-63-6
2-8

10-88-65-6
12-6

10-6

10-6

3-6

12-6

2-8

8-6

4-20
6-20

6-6

10-88-8
3-20

16-8

5-6

8-16
2-20

3-2016-8

10-6

8-8

8-6

12-6

10-8
2-20

4-20
8-16

6-6

6-24
8-24

20-16
6-20

12-16

12-16
6-20

6-24
8-16

12-6

8-8

16-8

8-244-203-20

12-24
2-20

10-8

24-16
20-16

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - Mamba2 - Canon-AB(no-res)

106 107 108

model size (#params)

106

107

108

le
ar

ne
d

kn
ow

le
dg

e
(b

it
s)

4-2

8-2

2-3
6-2

5-46-34-3
5-3

3-6 2-8 6-65-6

5-3

5-4

4-2
2-3

6-2

4-3

3-6

8-2

6-3

2-8 8-88-66-65-6
12-6

10-6

16-8

4-3
5-3

6-3

3-6

5-6

5-4

6-62-8

12-68-6
10-6 8-8

2-20
10-8

12-6

3-6

8-8

5-6

6-6
8-6

2-8

2-20
10-810-6

16-8
3-20

4-20
8-16

6-20

3-20
6-20

10-6

2-20

8-6

8-8

6-6

16-8
8-16

12-6

10-8
4-20

12-16
6-24

8-24
20-16

8-24
20-16

24-16
12-24

20-20
24-20

12-6

8-8

10-8
2-20

16-8
3-20

12-16
6-24

4-20
8-16

6-20

2 bit / param
1 bit / param
0.5 bit / param
0.25 bit / param

N=2000000
N=1000000
N=500000
N=200000
N=100000
N=50000

Task Capo - GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 99.2% 99.6%
89.8% 88.5% 98.2% 99.2%
83.7% 83.6% 88.8% 85.3%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.7% 98.9% 99.3% 99.3%
83.1% 90.1% 95.9% 98.1%
53.7% 55.5% 89.4% 94.3%

Task Mano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.9% 99.3% 99.6% 99.5%
98.9% 99.3% 99.3% 99.2%
98.6% 99.2% 99.0% 98.8%

Task Mano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.4% 99.5% 99.5% 97.8%
70.9% 97.0% 87.7% 97.9%
54.1% 83.3% 43.8% 65.6%

Task Mano
GLA - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.2% 97.5% 96.0% 98.1%
81.4% 90.1% 85.9% 92.6%
66.0% 77.9% 76.1% 78.9%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

87.9% 91.9% 88.5% 92.5%
55.1% 70.3% 58.6% 78.3%
33.5% 51.0% 37.2% 53.1%

Task Lano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

83.9% 90.6% 85.9% 86.4%
63.9% 77.8% 73.1% 68.9%
46.4% 57.4% 46.1% 51.9%

Task Lano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.0% 90.6% 89.5% 93.3%
70.3% 82.1% 72.9% 81.9%
44.9% 63.1% 52.8% 71.0%

Task Lano
GLA - Canon-ABCD(res)

Figure 15: Final comparison of base architectures equipped with full-score Canon layers: RoPE(ˇ “), NoPE, Mamba2,
and GLA. While Canon layers significantly enhance reasoning across all architectures (c.f. Figure 4), they
are not a panacea. With Canon layers added, Mamba2 and GLA still underperform Transformers by 2×
in reasoning depth, with results shown only for Depo(K=4) due to zeros at K=8/16 (see Figure 29).

generalization. However, our ablation studies (Figure 14; see further details in Figure 29) found
it offered no measurable benefit—and sometimes even degraded performance on other tasks. This
suggests mimetic initialization may overfit length generalization objectives at the expense of per-
formance on everything else. These results highlight the importance of evaluating architectural
choices on a diverse task playground.

Result 9 (Figure 14). Canon layers are lightweight, versatile improvements for Mamba2, consis-
tently enhancing reasoning and knowledge manipulation. Key findings include:

� Disabling Canon residuals improves Mano and Brevo, aligning with Mamba2’s strengths;
enabling residuals benefits recursive reasoning (Lano, Depo), though often unnecessary.

� Canon layers remain effective when placed outside the SSM block, highlighting their generality
as horizontal information-flow components independent of architectures.

� Mamba’s mimetic init [63], designed for length generalization, harms shorter-context perfor-
mance, highlighting the importance of architectural design using a diverse playground.

22

0 20000 40000 60000 80000 100000
Train steps

80

85

90

95

100
Ac

cu
ra

cy
 o

n
k

Task Depo1(K=4) | N=375 | Mamba2 - original(conv1d)

k=1
k=2
k=4

20000 40000 60000 80000 100000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=300 | Mamba2 - original(conv1d)

k=1
k=2
k=4

10000 20000 30000 40000 50000 60000 70000 80000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=225 | Mamba2 - original(conv1d)

k=1
k=2
k=4

0 20000 40000 60000 80000 100000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=375 | Mamba2 - Canon-AB(no-res)

k=1
k=2
k=4

20000 40000 60000 80000 100000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=300 | Mamba2 - Canon-AB(no-res)

k=1
k=2
k=4

10000 20000 30000 40000 50000 60000 70000 80000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=225 | Mamba2 - Canon-AB(no-res)

k=1
k=2
k=4

0 20000 40000 60000 80000 100000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=375 | Mamba2 - Canon-AB(res)

k=1
k=2
k=4

20000 40000 60000 80000 100000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=300 | Mamba2 - Canon-AB(res)

k=1
k=2
k=4

10000 20000 30000 40000 50000 60000 70000 80000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=225 | Mamba2 - Canon-AB(res)

k=1
k=2
k=4

0 20000 40000 60000 80000 100000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=375 | GLA - Canon-ABCD(res)

k=1
k=2
k=4

20000 40000 60000 80000 100000
Train steps

80

85

90

95

100
Ac

cu
ra

cy
 o

n
k

Task Depo1(K=4) | N=300 | GLA - Canon-ABCD(res)

k=1
k=2
k=4

10000 20000 30000 40000 50000 60000 70000 80000
Train steps

80

85

90

95

100

Ac
cu

ra
cy

 o
n

k

Task Depo1(K=4) | N=225 | GLA - Canon-ABCD(res)

k=1
k=2
k=4

Figure 16: Training curves for 12L768D architectures on Task Depo1(K=4), evaluated at k = 1, 2, 4 and n = N ,
with results shown across three learning rates for each k.

8 Final Comparison Across Base Models

Applying Canon uniformly to all architectures creates a controlled environment—like dropping
them from the same height at the tower of Pisa—exposing architectural trade-offs. We exclude
hybrid models (e.g., Griffin [20], Samba [48]) to isolate trade-offs among the core architectures.

Result 10 (Figure 15). With full-score Canon layers added, we find:

� reasoning depth: RoPE(ˇ “) ≈ NoPE ≫ Mamba2 ≈ GLA (e.g., 2× deeper reasoning);

� reasoning breadth: RoPE(ˇ “) ≥ NoPE ≈ Mamba2 ≈ GLA;

� knowledge capacity: Mamba2 ≈ GLA > RoPE(ˇ “) ≈ NoPE;

� knowledge manipulation: Mamba2 ≥ RoPE(ˇ “) > NoPE > GLA;

� hierarchical structure: RoPE(ˇ “) > NoPE ≈ Mamba2 ≈ GLA.

Remark 8.1. The initial comparison (Figure 4) does not represent a controlled comparison. In the
original setup, Mamba2 includes non-linear conv1d layers (a subcase of Canon-B) while GLA and
Transformers do not. By adding full-score Canon, the comparison becomes scientifically meaningful.

Challenges in Deep Reasoning for Linear-Time Models. Among all comparisons, reasoning
depth remains the weakest point of Mamba and GLA, and potentially most linear-time models on
the market. Due to their compression of in-context knowledge, these models struggle to reliably
achieve 99% accuracy on even 1- or 2-hop information retrieval tasks (as demonstrated in Figure 16),
despite prolonged training. When reasoning depth increases beyond 2 hops, errors from earlier steps
accumulate significantly, leading to an overall inability to perform deeper reasoning tasks.

We emphasize: the inability to achieve high accuracy on 1- or 2-hop tasks is not caused by
insufficient recurrent memory. Consider Mamba2: each layer passes 128d parameters (= expansion
× ssm state size × hidden size d), sufficient to store the entire input sequence.19 Additionally,
Mamba2 performs well on simpler 1-hop tasks (K = 1) with even a single-layer network. Thus, the

19For example, in Task Depo, representing N key-value pairs with a vocabulary size V requires at most 2N log2(V)
bits. In Depo2, we use N = 75 and V ≤ 2500. This knowledge can easily fit within the memory state of Mamba2.

23

bottleneck is not information-theoretic. (Later real-life experiments shall also confirm this.)
The core limitation instead lies in the memory dynamics: how efficiently in-context informa-

tion is encoded during compression and how reliably it is retrieved for reasoning. Inaccuracies in
encoding or retrieval accumulate over hops, affecting performance in deeper reasoning tasks.

Thus, our findings pinpoint the Achilles’ Heel of linear models for focused future research to-
ward more intelligent linear designs. Until linear architectures overcome these limitations, hybrid
approaches combining sliding-window attention (for deep reasoning) and linear or state-space com-
ponents (for compressing longer contexts) remain the best practical solutions. Integrating Canon
layers in both components can further maximize the overall performance.

Result 11 (Figure 16). Linear models like Mamba and GLA struggle with deep reasoning due to
error accumulated from inefficient compression and retrieval, despite sufficient memory. Com-
bining Transformers with linear models, both augmented with Canon layers, offers a compromise.

9 Real-Life Experiments

We present real-life experiments at the academic scale, pretraining 1.3B-parameter language models
on 100B tokens using the FineWeb-Edu [41] and SlimPajama [58] datasets, with a context length of
4096 (details in Appendix B). This setup mirrors configurations widely adopted in recent academic
studies, including Titans [9], GatedDeltaNet (with conv1d) [69], and MTA [25], and reflects one of
the most popular pretraining paradigms at this scale.

Model evaluation is conducted using at least two benchmark suites. The first suite is based
on lm-evaluation-harness [24], as employed in prior studies [9, 69]. We focus on commonsense
reasoning tasks, including PIQA [11], HellaSwag [75], WinoGrande [49], ARC-easy (ARC-e) and
ARC-challenge (ARC-c) [17], SIQA [50], BoolQ [16], WikiText, and LAMBADA (LMB) [40]. These
tasks evaluate sequence-to-sequence performance, where models solve multi-choice questions by
scoring each option using log-likelihood. This set is referred to as discriminative evaluation tasks,
and we adopt the original evaluation pipeline for consistency.20

The second suite follows the Just Read Twice (JRT) protocol [8], designed specifically to im-
prove the reliability of generative evaluations for smaller-scale pretrained models.21 The six tasks
in this suite include SWDE and FDA (originally described in [8]), as well as SQuAD(v2) [47],
TriviaQA [33], Natural Questions (NQ) [37], and DROP [21]. JRT-enhanced variants are denoted
as FDA2, SWDE2, SQuAD2, etc., to indicate prompt augmentation. This suite is referred to as
generative evaluation tasks, and we again adopt the original evaluation codebase for comparison.

Key Observations. Despite identical training setups, model performance varies significantly due
to random seeds, which affect initialization and data sampling order. For example, Llama(RoPE)-
1.3B exhibits fluctuations exceeding 4% on LAMBADA, 3% on BoolQ, and 1–3% on
other discriminative tasks. Variability is greater for generative tasks: FDA fluctuates by 9%,
SWDE by 8%, and other generative tasks by 3–5%—even with JRT prompts enabled. Hence,
only differences exceeding these thresholds are considered statistically meaningful. From Figure 17:

� Generative evaluation tasks: Linear models (Mamba2, GLA, and GatedDeltaNet) substan-

20Following tradition [9, 68, 69], we use (acc n) for HellaSwag and ARC-c, but acc n for other tasks.
21Generative testing can be noisy at this scale, as such models often struggle with prompt comprehension. JRT

addresses this by repeating the context and question twice, allowing models to more accurately reveal their intrinsic
generative capabilities.

24

how to interpret this table

 Physics says: Beyond this is noise.
We stop here to avoid over-interpretation

 GLA + Mamba2 (no conv1d)
+ NoPE perform the worst

 with Canons, Mamba2
+ GLA perform closely

 Linear models struggle (even short-context) retrieval tasks

Result 12: Real-life pretraining at academic scale

 simplest 2-hop reasoning
fails at academic scale

 “noise” from random seeds NoPE or RoPE(♩) helps
length generalization

LMB PIQA
Hella Wino

ARC-e
ARC-c SIQA

BoolQ
Wiki ppl

LMB ppl
FDA

FDA2
SWDE

SWDE2 NQ NQ2
Squad

Squad2
Triv

iaQA
Triv

iaQA2
Drop

Drop2
1-hop-0k

1-hop-1k
1-hop-2k

1-hop-3k
1-hop-4k

1-hop-5k
1-hop-6k

2-hop-0k
2-hop-1k

2-hop-2k
2-hop-3k

2-hop-4k
2-hop-5k

2-hop-6k
GLA - Canon-ABCD(res) - seed 20
GLA - conv1d - seed 20
GLA - original(noconv1d) - seed 20
GatedDeltaNet - original(conv1d) - seed 20
Mamba2 - Canon-AB(no-res) - seed 20
Mamba2 - Canon-AB(res) - seed 20
Mamba2 - noconv1d - seed 20
Mamba2 - original(conv1d) - seed 20
Mamba2(mlp) - Canon-ABCD(res) - seed 20
Mamba2(mlp) - original(conv1d) - seed 20

Llama(NoPE) - Canon-ABCD(res) - seed 20
Llama(NoPE) - original - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20
Llama(RoPE) - original - seed 21
Llama(RoPE) - original - seed 22
Llama(RoPE) - original - seed 23
Llama(RoPE) - original - seed 24
Llama(RoPE) - original - seed 25
Llama(RoPE) - original - seed 26
Llama(RoPE) - original - seed 27

48.2% 72.6% 54.1% 57.9% 58.3% 28.5% 41.5% 62.0% 16.7 12.8 nan 65.8% 76.0% 51.8% 56.3% 30.9% 36.4% 36.7% 58.1% 59.7% 59.7% 21.4% 37.3% nan 73.7% 63.8% 47.9% 36.4% 24.3% 17.0% 12.6% nan 31.8% 32.2% 28.1% 29.3% 25.3% 19.6% 15.2%
48.2% 72.3% 53.3% 56.7% 56.9% 28.2% 40.5% 60.6% 16.7 12.5 nan 57.2% 74.5% 47.3% 55.8% 28.6% 35.9% 37.9% 59.6% 58.8% 59.4% 22.9% 35.3% nan 63.0% 50.9% 35.0% 22.7% 16.0% 10.6% 9.4% nan 34.2% 35.1% 27.8% 28.8% 25.9% 21.8% 15.7%
43.7% 71.2% 49.2% 54.7% 55.8% 26.6% 40.3% 61.7% 18.2 16.0 nan 57.8% 71.9% 41.7% 52.8% 27.5% 34.0% 35.1% 57.2% 57.3% 57.8% 20.0% 37.7% nan 77.6% 63.7% 37.4% 26.9% 17.8% 14.6% 11.9% nan 31.8% 29.8% 22.0% 23.0% 19.8% 17.5% 14.3%
49.3% 72.4% 55.1% 58.7% 60.6% 28.8% 40.8% 62.1% 16.0 11.2 nan 62.3% 76.0% 51.2% 52.8% 30.8% 36.5% 39.1% 61.3% 60.4% 61.7% 23.6% 40.5% nan 76.4% 68.9% 53.6% 41.3% 31.8% 23.2% 14.3% nan 33.1% 33.0% 28.7% 29.4% 21.7% 23.3% 17.6%
48.3% 72.3% 55.6% 57.3% 59.6% 31.3% 41.4% 62.4% 16.1 12.0 nan 63.3% 77.7% 44.5% 53.0% 30.2% 35.8% 37.1% 58.2% 60.7% 60.1% 21.4% 35.2% nan 75.9% 65.8% 46.2% 36.4% 26.0% 17.4% 12.5% nan 33.2% 33.4% 28.5% 27.2% 24.6% 21.1% 18.5%
50.2% 72.3% 57.3% 59.4% 60.4% 30.5% 41.8% 61.2% 15.4 10.5 nan 67.6% 77.1% 48.2% 57.2% 31.4% 37.4% 37.8% 58.0% 61.6% 61.7% 22.3% 38.7% nan 95.0% 88.1% 68.0% 50.2% 34.4% 21.3% 14.1% nan 34.8% 30.5% 28.0% 26.3% 24.2% 17.9% 15.3%
44.8% 71.2% 51.0% 54.8% 56.8% 27.9% 40.7% 62.1% 17.5 14.3 nan 48.2% 64.4% 44.0% 49.1% 27.1% 33.0% 33.6% 56.5% 55.7% 57.3% 21.9% 35.6% nan 49.2% 34.6% 21.3% 15.4% 12.6% 9.8% 8.3% nan 33.0% 32.8% 28.6% 27.2% 21.0% 14.4% 10.1%
49.5% 72.6% 57.0% 57.1% 60.5% 29.1% 41.0% 60.7% 15.5 11.9 nan 56.4% 74.3% 48.2% 55.7% 30.9% 37.2% 38.3% 58.6% 60.0% 59.8% 24.3% 38.6% nan 75.4% 64.8% 40.4% 27.8% 16.6% 12.0% 9.4% nan 34.0% 33.9% 31.4% 34.3% 26.8% 23.1% 20.8%
51.1% 73.3% 56.5% 57.6% 61.1% 30.5% 40.2% 62.3% 15.6 10.6 nan 63.9% 77.5% 47.8% 56.7% 30.3% 37.6% 36.5% 56.8% 60.5% 59.9% 22.4% 37.1% nan 78.3% 63.0% 46.9% 31.7% 22.0% 13.7% 8.5% nan 35.0% 31.7% 29.1% 30.2% 24.6% 20.3% 13.9%
48.5% 72.5% 56.6% 57.8% 59.2% 30.0% 40.9% 62.1% 15.8 11.8 nan 56.4% 72.1% 45.2% 51.0% 31.2% 35.2% 37.7% 57.8% 59.7% 60.2% 21.4% 37.8% nan 75.7% 65.2% 42.8% 30.7% 23.7% 15.5% 12.8% nan 34.3% 32.8% 28.6% 29.1% 21.7% 15.8% 11.6%

nan nan
48.8% 72.1% 55.7% 58.6% 58.1% 29.3% 41.6% 62.8% 15.6 12.9 nan 77.7% 86.5% 56.5% 59.9% 36.1% 40.2% 49.1% 58.3% 63.7% 59.8% 26.8% 40.9% nan 99.3% 99.4% 98.9% 98.8% 99.4% 88.9% 10.1% nan 36.1% 34.8% 35.0% 33.4% 34.3% 30.5% 2.6%
43.8% 70.3% 49.2% 54.5% 55.1% 27.3% 39.0% 60.4% 18.1 21.3 nan 78.6% 84.8% 55.7% 63.4% 32.9% 35.9% 45.1% 53.6% 59.1% 55.7% 23.7% 38.3% nan 98.8% 98.8% 99.0% 98.5% 98.6% 66.8% 1.7% nan 28.9% 28.5% 25.5% 29.1% 28.4% 18.8% 1.6%
51.4% 71.7% 56.5% 58.9% 60.1% 29.9% 40.8% 63.2% 15.4 10.4 nan 78.6% 87.2% 57.3% 61.5% 35.4% 40.0% 46.2% 59.0% 65.5% 61.7% 25.8% 41.9% nan 99.7% 99.8% 99.1% 98.6% 95.3% 60.8% 18.6% nan 35.0% 32.3% 33.0% 30.6% 34.5% 29.1% 10.4%
51.7% 71.7% 57.2% 57.8% 60.9% 29.4% 41.0% 63.1% 15.2 11.1 nan 80.1% 87.4% 56.5% 62.6% 35.2% 39.4% 46.3% 57.1% 63.9% 61.4% 26.8% 42.3% nan 99.2% 99.6% 99.7% 99.3% 99.6% 80.6% 35.8% nan 34.2% 33.0% 32.5% 29.5% 31.5% 27.9% 25.1%
52.0% 72.4% 56.5% 60.4% 58.4% 29.0% 40.9% 62.8% 15.4 11.0 nan 78.6% 86.9% 54.8% 58.4% 34.1% 35.0% 44.6% 56.2% 63.8% 60.6% 24.2% 39.6% nan 98.9% 99.1% 98.0% 95.6% 91.3% 7.0% 1.2% nan 34.4% 34.2% 33.3% 31.4% 30.8% 6.2% 1.2%
50.8% 72.3% 55.8% 57.2% 59.1% 29.6% 41.1% 63.5% 15.7 11.2 nan 79.6% 85.6% 50.7% 59.4% 32.5% 36.0% 44.4% 55.2% 62.5% 60.0% 25.2% 40.8% nan 98.8% 96.6% 90.7% 84.0% 73.1% 14.8% 0.4% nan 30.5% 31.0% 30.5% 28.5% 29.3% 14.9% 0.2%
55.0% 72.0% 56.0% 57.7% 58.9% 29.1% 41.1% 62.3% 15.7 9.8 nan 80.3% 85.2% 52.1% 60.8% 35.1% 36.7% 45.3% 59.7% 63.4% 59.7% 23.8% 39.4% nan 99.2% 98.8% 94.6% 94.2% 80.5% 5.1% 0.3% nan 31.1% 30.1% 29.7% 24.6% 26.1% 6.7% 0.0%
52.3% 71.6% 56.7% 58.2% 59.4% 31.0% 42.1% 62.9% 15.8 10.3 nan 81.3% 87.4% 54.8% 59.4% 32.7% 36.2% 46.3% 54.4% 63.7% 61.4% 25.1% 41.1% nan 98.9% 98.0% 93.5% 89.3% 78.0% 4.4% 0.4% nan 29.2% 29.9% 28.4% 28.5% 27.7% 8.9% 0.2%
52.8% 72.1% 56.0% 58.8% 58.5% 29.0% 41.0% 60.7% 15.7 10.2 nan 76.2% 85.5% 50.9% 59.7% 34.1% 37.5% 48.9% 57.3% 63.2% 61.4% 25.6% 39.1% nan 99.3% 98.8% 96.2% 92.6% 79.1% 9.7% 0.4% nan 31.8% 31.9% 30.8% 30.1% 27.2% 7.6% 0.2%
53.1% 71.9% 56.5% 59.2% 60.8% 29.2% 41.3% 61.8% 15.7 9.9 nan 81.5% 87.2% 52.6% 62.2% 34.3% 36.6% 45.5% 55.4% 62.3% 59.8% 22.3% 42.8% nan 97.4% 95.5% 93.0% 84.4% 80.3% 8.5% 0.3% nan 31.2% 30.1% 30.5% 26.5% 26.4% 10.1% 0.2%
50.7% 72.1% 56.0% 57.9% 59.5% 29.6% 40.8% 61.1% 15.7 11.3 nan 78.7% 85.4% 53.8% 63.5% 33.3% 34.4% 45.6% 57.3% 62.9% 60.3% 24.9% 38.6% nan 99.2% 96.6% 96.2% 91.1% 80.5% 9.4% 0.7% nan 30.4% 30.1% 28.4% 25.4% 26.9% 13.5% 0.4%
52.3% 71.2% 56.1% 58.7% 59.3% 29.0% 40.9% 60.8% 15.8 10.4 nan 79.4% 84.6% 54.5% 61.9% 35.3% 36.0% 45.6% 56.4% 64.2% 59.1% 27.4% 39.3% nan 97.8% 98.7% 98.6% 95.7% 87.0% 7.3% 1.2% nan 31.0% 29.5% 27.8% 23.6% 23.8% 12.1% 1.3%
53.3% 71.4% 56.2% 58.5% 59.1% 29.9% 40.9% 61.2% 15.7 10.1 nan 79.0% 86.6% 52.8% 62.3% 33.5% 35.3% 43.9% 55.4% 61.4% 60.6% 25.0% 40.3% nan 99.3% 98.0% 95.6% 89.4% 80.8% 6.2% 0.2% nan 31.6% 31.4% 28.3% 26.9% 27.8% 6.1% 0.0%

SlimPajama | 100B token pretrain | 1.3B models

LMB PIQA
Hella Wino

ARC-e
ARC-c SIQA

BoolQ
Wiki ppl

LMB ppl
FDA

FDA2
SWDE

SWDE2 NQ NQ2
Squad

Squad2
Triv

iaQA
Triv

iaQA2
Drop

Drop2
1-hop-0k

1-hop-1k
1-hop-2k

1-hop-3k
1-hop-4k

1-hop-5k
1-hop-6k

2-hop-0k
2-hop-1k

2-hop-2k
2-hop-3k

2-hop-4k
2-hop-5k

2-hop-6k
GLA - Canon-ABCD(res) - seed 20
GLA - conv1d - seed 20
GLA - original(noconv1d) - seed 20
GatedDeltaNet - original(conv1d) - seed 20
Mamba2 - Canon-AB(no-res) - seed 20
Mamba2 - Canon-AB(res) - seed 20
Mamba2 - noconv1d - seed 20
Mamba2 - original(conv1d) - seed 20
Mamba2(mlp) - Canon-ABCD(res) - seed 20
Mamba2(mlp) - original(conv1d) - seed 20

Llama(NoPE) - Canon-ABCD(res) - seed 20
Llama(NoPE) - original - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20
Llama(RoPE) - original - seed 21
Llama(RoPE) - original - seed 22
Llama(RoPE) - original - seed 23
Llama(RoPE) - original - seed 24
Llama(RoPE) - original - seed 25
Llama(RoPE) - original - seed 26
Llama(RoPE) - original - seed 27

47.8% 72.7% 56.8% 58.6% 72.4% 38.9% 41.6% 62.0% 17.6 12.7 nan 47.3% 61.9% 38.7% 50.0% 24.5% 30.9% 36.5% 59.9% 61.1% 61.3% 23.5% 39.8% nan 45.6% 26.2% 12.9% 9.8% 5.6% 4.8% 2.8% nan 33.2% 32.1% 24.6% 23.6% 18.4% 14.7% 11.1%
48.7% 73.1% 58.0% 58.3% 70.7% 38.0% 41.4% 64.4% 17.3 11.9 nan 38.9% 56.9% 38.5% 48.7% 25.1% 28.4% 35.6% 58.5% 61.0% 62.1% 21.9% 35.4% nan 59.1% 39.6% 23.9% 12.9% 6.1% 6.5% 4.0% nan 33.6% 29.8% 24.9% 22.1% 16.9% 14.1% 10.5%
43.5% 71.5% 54.5% 55.8% 70.3% 36.2% 40.7% 62.0% 19.2 16.0 nan 35.2% 45.1% 31.1% 41.3% 23.3% 28.1% 32.3% 57.3% 57.3% 61.7% 21.7% 35.4% nan 55.1% 34.0% 18.1% 10.3% 6.6% 4.3% 3.8% nan 31.4% 27.3% 20.4% 17.9% 13.7% 11.1% 7.7%
48.8% 73.8% 58.5% 59.2% 72.5% 40.1% 42.0% 63.7% 17.1 11.6 nan 44.4% 56.8% 38.0% 45.5% 27.0% 32.9% 36.9% 61.7% 63.4% 63.7% 22.3% 39.7% nan 42.9% 32.6% 18.5% 10.1% 6.9% 6.0% 4.1% nan 31.6% 32.7% 25.2% 23.7% 19.5% 16.4% 11.0%
46.8% 73.3% 58.9% 59.9% 72.3% 40.4% 43.1% 62.9% 17.1 12.6 nan 39.9% 50.5% 30.7% 41.5% 25.9% 30.9% 35.0% 56.4% 61.0% 62.1% 22.1% 37.2% nan 58.2% 44.9% 27.0% 16.6% 9.6% 6.8% 5.1% nan 32.3% 29.9% 24.7% 25.1% 17.3% 14.4% 11.0%
48.0% 73.8% 60.4% 60.3% 73.4% 40.2% 43.2% 63.2% 16.7 11.2 nan 41.7% 51.6% 34.8% 47.3% 26.6% 30.9% 35.4% 57.9% 64.6% 64.0% 22.3% 35.8% nan 62.0% 47.0% 24.4% 12.2% 7.9% 5.3% 3.3% nan 32.8% 30.1% 24.3% 23.8% 18.2% 14.0% 9.5%
44.6% 72.3% 56.2% 57.0% 71.1% 37.7% 41.6% 62.4% 18.2 13.7 nan 23.6% 30.7% 27.8% 33.5% 23.1% 28.1% 31.8% 56.2% 62.0% 63.2% 20.0% 33.5% nan 50.0% 32.6% 18.0% 9.1% 6.3% 4.6% 3.2% nan 30.3% 28.7% 22.9% 20.5% 14.2% 11.6% 9.9%
48.5% 73.6% 60.3% 60.3% 73.1% 41.3% 42.3% 63.5% 16.6 11.8 nan 39.5% 49.6% 33.8% 42.7% 27.0% 31.3% 36.7% 57.0% 61.5% 62.7% 22.6% 38.7% nan 51.8% 38.4% 19.4% 13.1% 6.4% 5.5% 3.2% nan 33.4% 32.3% 24.8% 24.3% 20.8% 15.1% 13.6%
48.3% 73.7% 60.0% 60.7% 73.0% 41.6% 42.5% 64.7% 16.7 11.3 nan 34.4% 50.9% 36.2% 48.0% 25.6% 32.4% 35.0% 59.9% 63.0% 63.6% 22.9% 39.1% nan 63.8% 46.5% 20.1% 11.1% 7.7% 4.7% 3.4% nan 31.8% 30.5% 26.2% 24.5% 19.7% 15.5% 10.0%
47.3% 74.3% 60.0% 59.6% 73.0% 40.4% 42.2% 64.7% 16.8 11.6 nan 31.2% 42.4% 32.7% 37.7% 25.5% 31.6% 36.4% 58.9% 62.3% 63.8% 21.0% 38.8% nan 55.6% 37.0% 17.9% 10.3% 7.0% 6.2% 3.7% nan 31.9% 30.4% 24.4% 25.6% 17.9% 14.1% 10.5%

nan nan
49.9% 73.9% 58.7% 58.4% 72.1% 38.1% 42.6% 64.2% 16.6 11.3 nan 76.4% 83.7% 52.5% 57.4% 33.1% 37.5% 45.4% 58.4% 65.6% 60.6% 24.5% 38.0% nan 99.6% 99.1% 99.1% 98.6% 96.9% 85.5% 2.1% nan 34.4% 34.7% 34.2% 29.8% 35.7% 31.4% 12.8%
47.2% 71.9% 55.2% 57.2% 69.7% 38.6% 41.9% 62.8% 18.1 13.5 nan 76.3% 84.5% 53.8% 55.2% 28.4% 32.6% 43.7% 55.5% 62.5% 57.9% 23.3% 37.8% nan 99.2% 99.0% 98.4% 97.6% 96.8% 75.6% 6.4% nan 33.8% 33.6% 31.4% 31.3% 33.9% 23.1% 1.2%
51.1% 72.5% 59.4% 60.3% 73.2% 40.4% 42.5% 63.9% 16.3 10.9 nan 76.6% 83.0% 57.7% 60.6% 31.2% 37.5% 45.1% 61.4% 64.2% 63.9% 23.3% 39.4% nan 98.8% 98.0% 97.6% 96.6% 93.4% 81.1% 17.8% nan 34.4% 33.0% 33.0% 28.7% 32.0% 28.7% 9.8%
50.8% 73.2% 59.9% 60.5% 72.4% 41.5% 42.3% 64.6% 16.0 11.0 nan 77.1% 84.7% 54.1% 57.1% 31.9% 37.3% 45.3% 56.4% 66.4% 63.9% 24.4% 38.7% nan 99.1% 99.1% 97.9% 97.0% 94.5% 69.8% 29.4% nan 33.1% 34.3% 32.1% 28.9% 29.5% 28.7% 21.7%
50.7% 73.0% 59.6% 60.2% 74.0% 41.5% 42.5% 65.1% 16.2 11.2 nan 79.2% 82.7% 52.5% 59.2% 30.7% 36.3% 43.0% 54.8% 65.9% 63.5% 23.3% 38.8% nan 99.7% 99.1% 95.7% 89.2% 68.4% 4.9% 0.7% nan 31.1% 32.2% 31.7% 26.7% 28.3% 6.8% 0.7%
49.2% 73.2% 59.0% 58.8% 72.3% 39.1% 43.4% 64.6% 16.8 11.8 nan 68.8% 81.5% 52.0% 56.8% 29.4% 31.2% 43.4% 57.2% 64.0% 61.8% 22.1% 36.3% nan 99.4% 98.6% 96.5% 90.9% 51.1% 5.6% 0.2% nan 32.0% 31.1% 28.5% 26.0% 26.0% 5.4% 0.2%
48.7% 72.9% 58.8% 59.0% 71.4% 37.9% 42.8% 63.6% 16.6 12.7 nan 75.4% 82.1% 50.4% 56.9% 29.2% 34.0% 41.9% 56.1% 65.6% 62.8% 25.0% 37.6% nan 98.4% 97.8% 96.4% 91.3% 64.7% 1.6% 0.7% nan 30.8% 30.5% 28.6% 26.0% 25.5% 3.2% 0.3%
50.0% 73.8% 59.0% 59.7% 71.8% 38.7% 42.3% 62.5% 16.8 11.6 nan 70.8% 77.8% 45.3% 52.3% 28.5% 33.9% 44.1% 56.3% 62.1% 61.9% 20.9% 34.5% nan 98.0% 93.4% 87.0% 81.6% 49.0% 3.3% 0.4% nan 31.2% 31.2% 33.0% 27.2% 29.3% 3.9% 0.4%
47.4% 73.4% 58.6% 59.6% 71.7% 40.4% 42.9% 63.2% 16.6 13.3 nan 73.1% 73.4% 48.9% 54.7% 28.1% 31.5% 44.8% 55.3% 63.4% 61.3% 23.3% 38.2% nan 97.8% 93.4% 87.6% 80.9% 46.4% 7.5% 0.3% nan 30.2% 30.6% 30.7% 25.5% 27.4% 11.8% 0.0%
48.9% 72.5% 59.1% 59.0% 71.4% 41.1% 42.9% 62.3% 16.9 12.6 nan 74.7% 79.7% 49.2% 54.7% 30.3% 33.7% 47.9% 58.2% 65.0% 61.8% 24.2% 37.4% nan 99.0% 97.4% 92.3% 84.7% 58.4% 5.4% 0.9% nan 31.2% 31.2% 30.5% 30.4% 27.7% 8.1% 0.5%
50.1% 72.7% 58.9% 60.5% 72.2% 41.0% 42.3% 63.5% 16.8 12.0 nan 74.2% 76.8% 53.6% 52.6% 31.0% 34.1% 43.6% 57.4% 64.5% 63.6% 23.1% 37.3% nan 97.3% 96.9% 92.8% 88.7% 56.1% 2.7% 0.6% nan 30.8% 31.1% 28.9% 27.0% 25.9% 4.0% 0.2%
48.5% 72.7% 58.8% 60.7% 71.7% 39.8% 42.4% 63.4% 16.7 12.3 nan 71.3% 82.7% 46.2% 56.5% 29.0% 33.0% 44.8% 55.1% 63.1% 62.5% 24.5% 34.9% nan 98.0% 96.2% 91.2% 83.2% 59.8% 7.0% 0.8% nan 32.5% 31.1% 28.7% 22.4% 24.7% 6.1% 0.3%
48.1% 73.0% 59.3% 59.4% 72.6% 41.1% 42.1% 63.5% 16.7 13.1 nan 71.7% 78.3% 49.7% 60.5% 29.2% 34.3% 44.0% 55.3% 64.3% 61.0% 24.3% 36.6% nan 98.9% 97.6% 90.5% 86.3% 65.4% 3.3% 0.7% nan 28.9% 29.5% 29.3% 26.3% 26.2% 3.3% 0.4%

FineWeb-Edu | 100B token pretrain | 1.3B models

Figure 17: Performance of 1.3B models pretrained on 100B tokens, evaluated on discriminative (left), generative
(middle), and 1/2-hop reasoning (right) tasks. Best of 2 learning rates for Llama; 3 for GLA, Mamba,
and GatedDeltaNet. For GPT2 variants (e.g., standard MLP, ReLU2), see Figure 24.

tially underperform full Transformers, even on contexts shorter than their training length.22

Retrieval-heavy tasks like FDA/SWDE amplify this gap, aligning with our findings in Result 11.

� Both GLA and NoPE show poor performance in their base configurations, but significant
improve with full-score Canon layers. GLA+Canon often matches or surpasses Mamba2, while
NoPE+Canon performs comparably to RoPE across most tasks. These confirm Result 3+6.
Conversely, removing conv1d makes Mamba2 perform as bad as GLA, confirming Result 8.

� While RoPE, RoPE+Canon, and NoPE+Canon excel across tasks without notable differ-
ences, linear models like GLA+Canon, Mamba2+Canon (or conv1d), and GatedDeltaNet
(with conv1d) perform similarly. This suggests that at the academic scale (1.3B parameters
and 100B tokens), pretraining does not reliably highlight finer architectural differences.

Babilong and Multi-Hop Reasoning. The Babilong dataset [36] embeds the original bAbi
dataset [66] into passages with varied lengths of “junk” information to test multi-hop reasoning in
long contexts. At the academic pretraining scale, Babilong is overly challenging.23 Our Figure 25 in

22Generative task prompts are capped at 1024 tokens (or 2048 tokens for JRT prompts) based on the original
codebase, while models were trained with 4096-token sequences.

23For example, in babilong.qa2, the passage “Charlie went to the kitchen. Charlie got a bottle. Charlie moved
to the balcony.” is followed by the 2-hop question: “Where is the bottle?” Models fail even without junk context,
achieving below 37% accuracy—essentially random guessing

25

the appendix show that it is difficult to use Babilong to evaluate reasoning or length generalization.
The only statistical significant findings (in our standard) are:

� Linear models underperform Transformers even in short contexts, confirming their weakness
stems not from memory but from inefficiencies in compression and retrieval (c.f. Result 11).

� Transformers show significant long-context gains when RoPE is reduced (RoPE ˇ “) or removed
(NoPE), particularly in junk contexts extending to 4k tokens in length.

To address Babilong’s limitations, we introduce simpler evaluation tasks for multi-hop reasoning.
Task 1-hop-L embeds five birth-year statements within Wikipedia passages of length L, prompting
models to recall birth years. Task 2-hop-L uses three birth-year statements followed by three
equivalence links (e.g., “X was born the same year as Y”), prompting models to infer the birth
years of linked names. Details are in Appendix B. These tasks are designed to be the most natural,
leveraging common English (e.g., birth years). Results from Figure 17 show:

� All models struggle with 2-hop-L, only 30–36% accuracy (i.e., random guess) even with L = 0.

� 1-hop-L distinguishes architectures: full Transformers outperform linear models at L = 0,
while NoPE-based Transformers and RoPE(ˇ “) length-generalizes better as L increases.

Result 12 (Figure 17+25). Academic-scale pretraining—1.3B-parameter models trained on 100B
tokens with a context length of 4096—exhibits high noise and limited resolution, with most archi-
tectural differences statistically insignificant. Yet, some consistent findings emerge:

� Linear models (Mamba2, GLA, GatedDeltaNet) underperform full Transformers even on
short-context retrieval tasks (1-hop-L, FDA, SWDE), even with Canon layers (c.f. Result 11).

� Canon layers strongly elevate GLA to Mamba2-level, NoPE to RoPE-level (c.f. Result 3+6);
conversely, removing conv1d sharply downgrades Mamba2 to GLA (c.f. Result 8).

� All models struggle with 2-hop tasks, even in 100-token contexts, highlighting the limits of
academic-scale pretraining.

� Reducing or removing RoPE (i.e., NoPE or RoPE ˇ “) improves long-context generalization.

10 Conclusion and Future Direction

Academic-scale pretraining suffers from high noise and failed multi-hop reasoning, hindering reliable
architectural comparison. Our controlled synthetic playground offers a cost-effective, principled
alternative: by decomposing intelligence into atomic tasks, we discover and optimize Canon
layers—lightweight constructs that enhance reasoning depth and breadth, knowledge capacity and
manipulation, and structural reasoning across diverse architectures.

Canon layers revive weaker models (e.g., NoPE, GLA) to match or surpass stronger baselines
(e.g., RoPE, Mamba2), reduce reliance on RoPE to improve length generalization, and pinpoint
that linear models’ depth limitations arise from compression/retrieval inefficiencies rather than
memory. Like residual connections or LoRA—simple yet powerful—Canon layers may become a
minimal yet broadly applicable architectural primitive.

While our academic-scale real-world experiments align with synthetic findings, industrial-scale
validation remains crucial; we hope our systematic, economical methodology encourages future
investigations at larger scales. We plan to open-source our playground and evaluation suite to
support rigorous, reproducible architecture research.

Future Directions. Several interesting directions arise from this work:

26

� Alternative Canon Implementations. We focused on simple linear convolutional (kernel
size 3) Canon layers for their simplicity and efficient CUDA kernels. Future work should
explore dynamic, adaptive convolutions—with weights conditioned on hidden states to enable
gating—to assess whether performance gains justify the added computational overhead.

� Fine-grained Canon Design. We briefly explored selective application (e.g., early layers)
and cross-layer connections—e.g., h′ℓ + 1 = hℓ + 1 + Canon(hℓ)—which can fuse multiple
intra-layer Canon operations into a single step, improving efficiency. A systematic evaluation
within our synthetic framework could identify optimal Canon configurations. We are open to
exploring this direction further, especially if the community expresses significant interest.

� Evaluating Emergent Architectures. We selected one representative per architecture
family to ensure controlled comparisons and consistent inclusion of Canon layers. Without
this rigor, results may misleadingly attribute Canon’s gains to inherent architectural differences
(e.g., Mamba2’s built-in conv1d). With controlled comparisons in mind, future work can fairly
evaluate emergent architectures, potentially discovering new components with statistically
significant improvements.

� Enriching the Synthetic Playground. Our five synthetic tasks are only a starting point.
Designing additional tasks that isolate other architectural capabilities beyond those revealed
here—while remaining as atomic as possible—is crucial for finer-grained characterization of
model strengths and weaknesses.

� Interpretability and Probing. We omitted interpretability and probing analyses here
for clarity, despite existing frameworks for most tasks (e.g., Lano [3], Capo [5], Mano [6],
Brevo [71, 72]). We have conducted preliminary probing for Depo, revealing internal model
strategies such as positional parsing (even/odd positioning encoding “→ a” or “a →”) and
preprocessing of permutations before the first query (analogous to Brevo [71]). We choose not
to include them for clarity, as this paper focuses on architectural comparison.

� Sparking New Architecture Designs. By pinpointing specific weaknesses (e.g., linear
models’ reasoning depth limits and compression inefficiencies), our framework provides tar-
geted signals for improved future designs. We hope synthetic benchmarking informs and
inspires the next generation of architecture innovations.

27

Appendix
This appendix contains full technical specifications and implementation details for all experi-

ments presented in the main paper. It is intended to support reproduction and in-depth inspection.
We provide complete training protocols and evaluation procedures for all five synthetic tasks (Depo,
Brevo, Capo, Mano, Lano), real-life experiments (1-hop-L, 2-hop-L, Babilong), and 100B-token
SlimPajama/FineWeb-Edu pretraining. We also document the architectural configurations for all
models, including Transformers, GLA, Mamba variants, and MoEs. Additional ablation figures,
KL-divergence evaluations, and variant comparisons are included for readers interested in deeper
technical insights or replication of results.

A Details on Synthetic Pretraining Tasks

We intend to release the code for generating all synthetic pretraining datasets used in this paper,
though this may require additional time. To make this paper fully self-contained, we provide
detailed specifications below.

Remark A.1. Throughout this paper, we utilize combinations of A100, H100, and H200 GPUs with
bf16 mixed-precision training. While we report the total batch size used in our experiments, we do
not specify the exact number of GPUs, as this does not materially affect the results.24

A.1 Details on Task Depo: Mental Reasoning Depth

The synthetic pretraining task Depo is designed to evaluate mental reasoning depth by requiring
multi-step traversal over directed permutations. The dataset is defined by two parameters: the
maximum permutation size N and the reasoning depth K. Each problem instance is generated as
follows:

First, a permutation length n is sampled uniformly from {3, 4, . . . , N}. A directed permutation
of n nodes is then created, representing a cycle where each node points to its successor: x1 → x2 →
· · · → xn → x1. The permutation is presented as edges in the form of ordered pairs (xi, xi+1),
but these edges are shuffled randomly into a sequence of 2n tokens. This random ordering ensures
that the original cycle structure is not immediately apparent, which would otherwise make the task
trivial. The final data format is:

<bos> x1 y1 x2 y2 ... xn yn <query k_1> q_1 <ans> a_1 ... <query k_t> q_t <ans> a_t

Here, xi → yi represents shuffled edges of the permutation. For each query qj , a node is
randomly chosen from {x1, . . . , xn}, and its kj-th successor in the permutation is computed based
on the reasoning depth kj ∈ [K], sampled uniformly. The correct answer aj is the kj-th successor
of node qj . The number of queries t is set as min(10, n) to balance computational feasibility while
ensuring smaller graphs remain interpretable.

Two variants of Depo are used:

� Depo1: Each node name is encoded as 1–2 tokens, with a vocabulary size of 50.

24For instance, training with a single GPU and a batch size of 128 is equivalent to training with 64 GPUs where
each GPU processes a batch size of 2. Our codebase supports dynamic GPU allocation, ensuring the total batch size
is fixed across training runs while the number and type of GPUs may vary.

28

� Depo2: Each node name spans 5–7 tokens using a small vocabulary size of 4, introducing
ambiguity that challenges the model’s disambiguation capabilities.25

In addition to node names, special tokens are used: <bos>, <ans>, and <query k> for k ∈
{1, . . . ,K}. The total number of special tokens is K + 2.

Sampling distribution. To ensure controlled task difficulty progression, n is sampled proportion-
ally to 1√

N+n
. This distribution biases training toward simpler cases early on, allowing the model

to gradually build foundational reasoning skills before encountering harder examples. Although
this distribution is not perfect, it is both simple and effective, enabling clean comparisons between
architectural designs without introducing unnecessary hyperparameter complexity. More sophisti-
cated curriculum-based approaches, such as scheduled difficulty [38], may provide an alternative
solution but could introduce significant noise, thereby complicating controlled comparisons.

Remark A.2. This distribution was proposed and tested thoroughly by ZA in 2023 in a number of
settings, and subsequently tested (via private communication) by Alfarano in modular arithmetic
pretraining [51], where it was benchmarked against other options and shown to also perform well.
While synthetic data like this cannot fully replicate the intricacies of real-world distributions, it
allows us to simulate an ideal training regime. This forward-looking approach anticipates future
improvements in pretraining data—such as higher-quality datasets or RL-based post-training—and
evaluates model architectures based on their scalability under such optimal conditions.

Training protocol. To reduce computational cost, we employ label masking: cross-entropy loss is
computed only on tokens associated with <ans> and aj . This optimization halves training duration
without affecting architectural comparisons. Problem instances are generated online, concatenated,
and aligned into 2048-token context windows. Left alignment ensures that the first problem instance
in each context is never truncated, as truncation leads to incomplete edges and unusable data.

Evaluation protocol. During evaluation, the permutation size is fixed at n = N , and reasoning
depth is tested at both k = K (maximum depth) and k = K/2 (intermediate depth). The protocol
mirrors training by generating and concatenating evaluation samples online into 2048-token win-
dows. Accuracy is reported over all answer tokens in the window, ensuring that results are stable
regardless of whether answers appear early or late in the sequence.

Data splits and hyperparameters. For Depo1, we use N = 375, 300, 225 and primarily
K = 8, while testing K = 4 for weaker models. Models are trained from scratch with fresh data
while using a fixed random seed to ensure data consistency across architectures. Training uses a
batch size of 128, AdamW optimizer (β = 0.9, 0.98 and ε = 10−6), weight decay of 0.03, learning
rate warmup for the first 1000 steps, and cosine decay to 10%. Training steps are set to 112.5k,
100k, or 87.5k, adjusted for the problem lengths N = 375, 300, 225. The best accuracy is reported
across four runs using learning rates {0.0003, 0.0005, 0.001, 0.002}.

Similarly, in Depo2, we use N = 125, 100, 75 and K = 16 (or K = 4 for weaker models).
Training steps are set to 150k, 125k, and 100k, respectively.

A.2 Details on Task Brevo: Mental Reasoning Breadth

Our pretraining synthetic task Brevo is designed to test mental reasoning breadth by requiring
a subgraph topological sort from a given directed acyclic graph (DAG). The dataset is defined
by a maximum graph (node) size N . For each problem instance, we first sample a graph of size

25 Multi-token names are generated such that the first ℓ− 1 tokens are chosen from [1, V], while the final token is
selected from [V +1, 2V]. This creates implicit word boundaries similar to those handled by BPE-based tokenization
strategies, such as GPT2Tokenizer.

29

n ∈ {3, 4, . . . , N} using the same sampling distribution ∝ 1√
N+n

as employed in Depo, and generate

data in the following format:

<bos> x1 y1 x2 y2 ... xm ym <query> q <ans> a1 a2 ... ap <eos>

Here, the 2m tokens define m directed edges xi → yi spanning n nodes, meaning that yi depends
on xi. Given a query vertex q, the model must return all vertices it recursively depends on, in
topological order starting from the leaves. Specifically, if u → v → q, the model must output u
before v.

DAG generation protocol. After sampling n, we generate the random DAG as follows. First,
we randomly shuffle all the vertices and begin inserting edges. We select a random number L ∈
{1, . . . , ⌈n−1

4 ⌉ + 1}, designating the first L vertices as leaves (no incoming edges). Starting from
vertex L + 1, we iteratively process each vertex by selecting all preceding vertices that have an
out-degree of at most 3. From this set, we randomly pick a subset of between 1 and up to 4 vertices
and connect them to the current vertex. This process continues until all vertices are traversed,
yielding a DAG with a maximum in-degree and out-degree of 4.26

At this point, the vertices naturally form a topological order from left to right. We then select
a random query vertex from the last quarter of the vertices. Choosing vertices closer to the right
increases the depth of the dependency graph while avoiding degenerate cases where all nodes are
reachable (such as if the query were the last vertex). Finally, we reshuffle all the vertices and assign
random names to them. Vertex names are uniquely selected, as described below.

Vertex names. In Brevo1, each vertex name consists of a single unique token, randomly selected
from {1, . . . , N}. In Brevo2, each vertex name spans 2–4 tokens using a vocabulary of size 4,
which introduces ambiguity (e.g., multiple token combinations can encode unique vertex names).
See Footnote 25 for the method used to generate multi-token words. Aside from vertex names, we
use 4 distinct special tokens: <bos>, <query>, <ans>, and <eos>.

Training protocol. To reduce computational costs, we enable label masking, where the cross-
entropy loss is computed only on <ans>, <eos>, and aj tokens. Selective testing showed that this
technique saves training time without affecting architectural comparisons. Instances are generated
online, concatenated, and left-aligned into context windows. By left-aligned, we mean that the
first instance in each context window is never truncated. Without left alignment, truncation of the
first instance would render it incomplete (e.g., missing edges in the graph), making the instance a
useless training example.

Evaluation protocol. During evaluation, we fix n = N and test only the largest graph. The
model is prompted with a random DAG of size n and query vertex q, and tasked to generate
the answer sequence a1, . . . , ap. The generated sequence is then parsed and validated against the
following criteria:

� The answer sequence must contain all reachable vertices from q and no non-reachable vertices.

� The vertices in the answer sequence must appear in a valid topological order. Since topological
orderings are not unique, any valid ordering is accepted.

Invalid tokens, duplicate outputs, or missing vertices are not accepted, and no partial credit is
given.

Training details. In Brevo1, we use N = 110, 90, 70 with vertex names consisting of one token,
and each problem fits within 1024 tokens. Models are trained from scratch with fresh data but

26Constraining the maximum in-degree and out-degree to 4 prevents the dependency graph from becoming too
shallow, which would make the task trivial.

30

a fixed seed (ensuring pretraining data consistency across model architectures). Training uses a
context length of 1024, a total batch size of 256, AdamW optimizer (β = 0.9, 0.98 and ε = 10−6),
weight decay of 0.03, learning rate warmup over the first 1000 steps, and cosine decay to 10%.
Pretraining lasts 150k, 125k, or 100k steps respectively for N = 110, 90, 70, accounting for the
varying problem lengths. We report the best performance out of four runs using learning rates
{0.0003, 0.0005, 0.001, 0.002}.

In Brevo2, we use N = 50, 40, 30, with vertex names spanning 2–4 tokens, and each problem
fits within 1536 tokens. Models are trained in the same manner as Brevo1, except that we use a
context length of 1536, a total batch size of 192, and pretraining lasts 250k, 225k, or 200k steps
respectively for N = 50, 40, 30.

The comparison between Brevo1 and Brevo2 demonstrates that the ambiguity introduced
by multi-token vertex names does not noticeably impact architectural comparisons, which is the
focus of this paper.

A.3 Details on Task Capo: Knowledge Capacity

The synthetic pretraining task Capo borrows directly from Allen-Zhu and Li [7], where the au-
thors introduced the bioS(N) dataset. This dataset contains N biographies of randomly generated
individuals, each described by six attributes: birth date, birth city, university, major, employer,
and working city.27

To represent these biographies in natural language, each individual is described via randomly se-
lected English sentences for every exposure to the pretraining data. Sentence templates correspond
to the individual’s attributes, ensuring diverse paraphrasing across exposures. For example:

Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and
guidance from faculty members at Massachusetts Institute of Technology. She completed her education with a focus on
Communications. She had a professional role at Meta Platforms. She was employed in Menlo Park, CA.

The diversity in writing ensures that models learn to store explicit knowledge about an individ-
ual’s attributes, rather than merely memorizing surface-level patterns in specific templates [5, 6].
Following the recommendations of [7], we pretrain models over 100 exposures per individual, which
provides a controlled environment for comparing architectural differences. Training beyond 100
exposures diminishes architectural differences, as longer training typically allows all models to
converge toward similar levels of performance [7].

Knowledge format independence. Previous experimental evidence suggests that a model’s
knowledge capacity does not heavily depend on the specific format in which the knowledge is
stored. For example, one could consider synthetic alternatives such as longer word lengths, dif-
ferent vocabulary sizes, or even abstract encoding formats. Importantly, any such synthetic con-
figuration remains a reliable discriminator for comparing model architectures. For simplicity and
interpretability, however, we adhere to the more English-like biography format in bioS(N), aligned
with [7].

Clean experimental comparisons. Models could alternatively be pretrained on exposures
distributed according to power-law dynamics or incorporating infrequent “junk data.” While such
approaches might better mimic real-life datasets, they introduce subtle stochastic effects that can
depend heavily on the formatting of rare samples. To avoid confounding factors, we adopt the

27The working city is derived from the employer’s headquarters, while all other attributes are sampled uniformly
and independently. Possible attribute domains include N0 = 400 × 400 × 1000 person names, 12 × 28 × 200 birth
dates, 200 birth cities, 300 universities, 100 majors, 263 employers, and two pronouns.

31

cleaner 100-exposure baseline for pretraining individual biographies, as it allows for clearer isolation
of architectural capabilities.

Evaluation protocol. After pretraining on bioS(N) data, knowledge capacity is measured based
on the number of bits a model reliably stores. This quantity is further normalized to bits per
parameter to account for model scale. Partial correctness (e.g., recalling the year but not the full
date of birth) is accounted for in the bit computation to ensure fine-grained evaluation of knowledge
storage. For detailed computation, we direct readers to [7]. Unlike other tasks presented in this
paper, measurement of bits per parameter requires varying both data sizes N and model sizes to
compute the Pareto frontier of knowledge capacity versus parameter count. For this reason, we
vary N between 50K and 2M while testing models ranging from 1M to 500M parameters.

Pretraining setup. To ensure consistency across all architectures, pretraining uses the GPT-
2 tokenizer and ties weights for embedding and output layers. Tying weights ensures consistent
learning dynamics across model families (e.g., GPT, Llama, Mamba, GLA), while limiting the
vocabulary size to 3275 tokens (from GPT-2’s original 50257 tokens), as the bioS(N) dataset does
not utilize the entire vocabulary.

Batch size, learning rate decay, and other hyperparameters strictly follow the 100-exposure
baseline outlined in [7], with only minor modifications. Specifically, we test two learning rates
per configuration (selected from their optimal three) and report the best results. As a result, our
reported knowledge capacity in Figure 4 may slightly deviate from the original results, though
introducing Canon layers restores capacity without adding hyperparameter choices.

Hyperparameters for dense models. The following hyperparameters were used for dense
models in the 100-exposure setup:

� For N = 50K: weight decay wd = 0.01, learning rates lr = 0.001/0.0005, batch size 12.
� For N = 100K: wd = 0.01, lr = 0.001/0.0005, batch size 24.
� For N = 200K: wd = 0.01, lr = 0.001/0.0005, batch size 48.
� For N = 500K: wd = 0.01, lr = 0.001/0.0005, batch size 96.
� For N = 1M: wd = 0.01, lr = 0.001/0.0005, batch size 192.
� For N = 2M: wd = 0.01, lr = 0.0005/0.0003, batch size 384.

Hyperparameters for MoE models. Mixture-of-Experts (MoE) training was conducted using
the tutel moe package [29], consistent with [7]. MoE training uses 32 experts with topk = 1 and
cap factor = 2. Due to the larger learning rates required for MoE-based pretraining, we use the
following hyperparameters:

� For N = 50K: wd = 0.01, lr = 0.005/0.002/0.001, batch size 12.
� For N = 100K: wd = 0.01, lr = 0.005/0.002/0.001, batch size 24.
� For N = 200K: wd = 0.01, lr = 0.005/0.002/0.001, batch size 48.
� For N = 500K: wd = 0.01, lr = 0.002/0.001, batch size 96.
� For N = 1M: wd = 0.01, lr = 0.002/0.001, batch size 192.
� For N = 2M: wd = 0.01, lr = 0.001/0.0005, batch size 384.

A.4 Details on Task Mano: Knowledge Manipulation

The synthetic pretraining task Mano evaluates a model’s ability to manipulate stored knowledge
mentally without relying on explicit intermediate cues (e.g., Chain-of-Thought reasoning). Unlike
memorization tasks, Mano requires multi-step internal computation, testing the model’s capacity
for hierarchical manipulation.

Task format and setup. The dataset is defined by a maximum length L, with each instance
consisting of arithmetic expressions of ℓ operations, where ℓ is sampled uniformly from [1, L].

32

Expressions are presented in prefix (pre-order) notation to eliminate ambiguities in parentheses
and operator precedence. For example, a length-ℓ = 3 instance is:

<bos> <len_3> + * a b - c d <ans> ans

This corresponds to the expression ((a × b) + (c − d)) mod 23, where operands a, b, c, and d
are integers sampled uniformly from [0, 22]. The task involves three operations (+, -, *), each
represented as distinct tokens, with all computations performed modulo 23.

The factual base consists of three 23×23 arithmetic tables (addition, subtraction, and multipli-
cation), which models learn implicitly during pretraining. Operands are encoded as single tokens
from [0, 22], while special tokens (<bos>, <ans>, and <query_ℓ> for ℓ ∈ [L]) structure the sequence.

Expressions are generated recursively: the first operator is sampled uniformly from the three
available options, and its operands are split into sub-lengths ℓ′ and ℓ − 1 − ℓ′ (with ℓ′ chosen
uniformly), recursively generating sub-expressions.

Why modular arithmetic? Modular arithmetic (mod 23) ensures manageable knowledge size
while introducing sufficient diversity in intermediate and final results. Similarly, limiting operations
to addition, subtraction, and multiplication simplifies task design while retaining depth, enabling
models to focus on hierarchical manipulation instead of memorizing surface-level patterns.

Training protocol. Models are pretrained on three datasets corresponding to difficulty levels
L = 16, L = 13, and L = 10. The cross-entropy loss is applied over all tokens (problem description
and answer), without label masking, since hierarchical manipulation requires attention across the
full sequence. Instances are generated online, concatenated, and left-aligned into context windows
of length 1024.

Models are trained from scratch using fixed random seeds for consistency across architectures.
Training lasts 110k, 95k, and 80k steps for L = 16, L = 13, and L = 10, respectively. Hyperparame-
ters include a batch size of 64, AdamW optimizer (β = 0.9, 0.98 and ε = 10−6), weight decay of 0.1,
learning rate warmup for 1000 steps, and cosine decay to 10% of the initial learning rate. Results
are reported based on eight training runs with learning rates {0.0001, 0.0002, 0.0003, 0.0005} and
two seeds.

Evaluation protocol. During evaluation, expressions are sampled from the same distribution
used for training, with ℓ fixed at L (maximum difficulty). Accuracy is computed over all problem
instances within 1024-token context windows, including non-first instances. Since outputs are single
tokens representing exact modular arithmetic results, partial correctness is not applied.

A.5 Details on Task Lano: Hierarchical Language Structure

The synthetic pretraining task Lano evaluates a language model’s ability to perform structural
reasoning, specifically long-range structural planning that requires dynamic programming to resolve
ambiguity. Unlike in-context reasoning tasks (e.g., Depo, Brevo) or knowledge reasoning tasks
(e.g., Mano), Lano challenges models to learn hierarchical structures governed by probabilistic
context-free rules and process sequences that cannot be resolved locally.

Task format and setup. Sentences are generated probabilistically using context-free rules. The
cfg3f dataset [7] starts with the root non-terminal (NT) symbol 22, which uniformly expands into
one of four rules:

22 7→ 20 21, 22 7→ 20 19 21, 22 7→ 21 19 19, 22 7→ 20 20.

Each rule is chosen with probability 1/4, ensuring uniform randomness. Rules are applied re-
cursively and probabilistically to NT symbols (e.g., 19, 20, 21), replacing all NT symbols with

33

25|->22 22
25|->23 22
25|->24 23 24
 22|->19 20
 22|->19 19 21
 22|->20 19 19
 23|->21 19 20
 23|->21 20
 23|->19 20 20
 24|->19 19
 24|->20 21 19
 24|->19 21 21
 19|->17 17 16
 19|->16 18 18
 19|->16 17
 20|->17 17 17
 20|->18 18
 20|->18 17 18
 21|->18 16
 21|->16 17 17
 21|->16 18 16
 16|->14 15
 16|->13 15
 16|->15 15
 17|->14 14
 17|->15 15 15
 17|->15 14
 18|->14 13 15
 18|->13 13 14
 18|->13 14

cfg3j 3322131233121131232113223123121112132113223113113223331231211121311331121

3212133333123221213123222111121332213113113113111111323123313313331133133

3332231211311121221111211233312331121113313333331123333131111333312113211

3121211333332121111212132232233221332211132211323233131112132232232212111

33331121322221332211212133121331332212213221211213331232233312

2312213113121122122212221131312113332333333333231312123212121213321223313

3131313321112212131331331122113323211331221333322213323211221123332332311

1331222333131233322332333122232331212131131131211313321233321333121133112

2113321231311313121112111213121313111233323333333131212311222211112133211

3113133212121333232111133231311123311113131211222231211111222122131332111

2112213312213111213132313313122122333232313122233233313133323131131212311

2211222313123323133131323131332131122131131232113113133323131332233221113

3133111331111113313113121112331221311113321213232131331113321131312111111

2212213332321131131332321133221313231121221312133323331331222313133122131

1221221312233211122123133222233332113113322332313132311221223311213112233

3231222111131133112333231121311112112221133221313321

2223112122231112222233213223323213112232222123131321233231312223112231232

3213213232321322311233212313322232132133232132112112332221332321312333223

2311222123232233322233222233323131131121233213132332111223332121323112332

1123132112133212112313321122312332311222112321323122122231321232323223322

3323123232332323232132123112332121333211223312231112312322121123111212121

3321123111233231233322323321123131332332231121123323322222321233323232221

2231233211223332132332132221231332332232223112321313213111231313211122322

3323213211331133131233213222332321332122332123311232233232132231123112323

2223322332321312313321332222322223212322123321232321311121121222112313321

2323323321332132231122212311222232333232132122213131332113321122312321133

211121123321223121232111233213112112321122222323112

a sample from cfg3j:

a sample from cfg3k:

a sample from cfg3f:

25|->22 23
25|->24 24
25|->24 23
 22|->21 19
 22|->21 20 20
 22|->21 21
 22|->19 21
 23|->20 21 20
 23|->20 21 21
 23|->20 20
 23|->19 20
 24|->21 20
 24|->20 21
 24|->19 19 21
 19|->17 18 16
 19|->18 16
 19|->18 16 18
 19|->18 18 17
 20|->17 17 17
 20|->16 18
 20|->17 17 16
 20|->18 17 16
 21|->18 17
 21|->16 18 16
 21|->17 16 16
 21|->17 18 18
 16|->15 14
 16|->14 15
 16|->15 14 15
 16|->14 13 13
 17|->14 15 14
 17|->15 13 13
 17|->15 15
 18|->14 14
 18|->15 13
 18|->13 14 14

cfg3k

13|->10 12 12
 13|->11 11 12
 13|->12 12
 14|->10 11
 14|->10 11 11
 14|->11 10 10
 14|->11 11
 15|->12 11
 15|->10 10
 15|->11 12
 10|->7 7
 10|->8 8
 10|->9 9 7
 10|->7 9 7
 11|->8 7 9
 11|->7 7 7
 11|->7 8 7
 12|->7 8
 12|->8 8 7
 12|->9 7 9
 12|->8 9
 7|->3 3
 7|->1 3 1
 7|->2 1
 8|->2 3
 8|->1 1 2
 8|->3 1
 8|->1 2 2
 9|->1 3 3
 9|->2 2
 9|->1 1 1
 9|->3 2 3

13|->10 12
 13|->12 10
 13|->11 11
 14|->10 11
 14|->12 11 10
 14|->10 11 11
 15|->11 12 12
 15|->10 10
 15|->11 12
 10|->7 7 9
 10|->8 7
 10|->9 8
 11|->7 8 8
 11|->9 9
 11|->8 8
 12|->7 7 8
 12|->8 7 7
 12|->9 8 8
 7|->1 2
 7|->2 2
 7|->3 3 2
 8|->3 1
 8|->2 3
 8|->1 1 2
 9|->3 2 1
 9|->1 3
 9|->3 2

22|->20 21
22|->20 19 21
22|->21 19 19
22|->20 20
 19|->18 16 18
 19|->17 18
 19|->18 18
 20|->16 16
 20|->16 17
 20|->17 16 18
 21|->18 17
 21|->17 16
 21|->16 17 18
 21|->16 18
 16|->15 15
 16|->13 15 13
 16|->14 13
 16|->14 14
 17|->15 14 13
 17|->14 15
 17|->15 14
 18|->14 15 13
 18|->15 13 13
 18|->13 15

cfg3f

13|->11 12
 13|->12 11 12
 13|->10 12 11
 14|->10 12
 14|->12 10 12
 14|->12 11
 14|->10 12 12
 15|->10 11 11
 15|->11 11 10
 15|->10 10
 15|->12 12 11
 10|->8 9 9
 10|->9 7 9
 10|->7 9 9
 11|->8 8
 11|->9 7
 11|->9 7 7
 12|->7 9 7
 12|->9 8
 12|->8 8 9
 7|->2 2 1
 7|->3 2 2
 7|->3 1 2
 7|->3 2
 8|->3 1 1
 8|->1 2
 8|->3 3 1
 9|->1 2 1
 9|->3 3
 9|->1 1

Figure 18: Task Lano: our constructed dataset against the cfg3f dataset from [3].

terminal (T) symbols 1, 2, or 3. The process generates sentences composed entirely of terminal
symbols based on probabilistic expansions.

Pretraining involves predicting next tokens in CFG-generated sequences without access to the
underlying rules, requiring models to learn structural reasoning implicitly. During evaluation,
models are prompted with a single <bos> token and tasked to generate CFG-compliant sentences
using temperature 1. Accuracy is assigned only for fully valid sentences, with no partial credit
applied.

Parsing difficulty and ambiguity. Parsing CFG-generated sequences is uniquely challenging
because resolving derivation chains requires global reasoning. For example, parsing ”221213133”
requires resolving structural ambiguity between terminal symbols that cannot be inferred from lo-
cal patterns alone. Instead, parsing requires an O(n3) dynamic programming algorithm to globally
reconstruct relationships across the sequence, even when CFG rules (from Figure 18) are explicitly
available. During pretraining, models face additional difficulty as they must learn these relation-
ships without direct access to the probabilistic rules.

Building upon cfg3f as a baseline, we introduce two extended datasets in this paper:
� cfg3k: Retains the probabilistic framework of cfg3f but increases depth by one level, doubling

sequence length and increasing parsing complexity by eight times due to the cubic nature of
dynamic programming (O(n3)).

� cfg3j: Extends cfg3f by one level but reduces the number of rules, creating shorter sequences
with intermediate difficulty between cfg3f and cfg3k.

Both datasets use the same probabilistic generation process and are detailed in Figure 18.

Training details. Pretraining uses cross-entropy loss computed over all tokens without label
masking. Sentences are generated online, concatenated, and aligned into context windows. For
cfg3f, we use a context length of 512 as in [7], while longer datasets cfg3j and cfg3k require extended
context lengths of 1536.

Models are trained from scratch using fixed seeds for consistency across architectures. Training
uses a batch size of 96, AdamW optimizer (β = 0.9, 0.98 and ε = 10−6), weight decay of 0.1, no
learning rate warmup, and linear decay to 0. Pretraining lasts 100k steps, and results are reported
from four training runs using learning rates {0.0002, 0.0003, 0.0005, 0.001}.

Evaluation details. During evaluation, models generate sentences from a <bos> prompt using

34

temperature 1 and beam width 1.28 Generated sentences are validated using an O(n3m) dynamic
programming parser (n: sequence length, m: CFG rules) to confirm compliance. An alternative
evaluation computes KL divergence between the model’s next-token prediction distribution and the
ground-truth CFG predictions. Both methods yield consistent architecture comparisons.

B Details on Other Experiments

This section provides a brief description of additional tasks used in the paper.

Full Copy. In Figure 5, we evaluated the performance of models with 1 or 2 layers on a trivial
pretraining task. This task involves choosing N = 500 and generating a sequence starting with
<bos>, followed by a random permutation of N tokens between 1 and N , then appending <query>

and an identical copy of the sequence. The task uses label masking, where the loss is computed
only on the N answer tokens. Models are pretrained with a context length of 1024, a total batch
size of 32, AdamW optimizer (β = 0.9, 0.98 and ε = 10−6), weight decay of 0.03, learning rate
warmup for the first 1000 steps, and cosine decay to 10%. Training duration is set to 50k steps,
and the best results are reported across learning rates {0.0005, 0.001, 0.002, 0.005}.

For this task, we also assessed the models’ ability to correctly copy the first t = 1, 2, 4 tokens
within the sequence. As shown in Figure 19, these results are nearly identical to those in Figure 5.

500
1000

1500
2500

5000
10000

15000
20000

25000
30000

35000
40000

45000
50000

training steps

Canon - RoPE(1L-2H-16D)
Canon(cst) - RoPE(1L-2H-16D)
RoPE(1L-2H-16D)
RoPE(1L-4H-32D)
RoPE(1L-8H-64D)
RoPE(1L-16H-128D)
RoPE(2L-2H-16D)
RoPE(2L-4H-32D)
RoPE(2L-8H-64D)
RoPE(2L-16H-128D)

0% 68% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 73% 97% 99% 100%100%100%100%100%100%100%100%100%100%
1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2%
0% 0% 1% 1% 1% 3% 4% 5% 6% 6% 6% 6% 6% 7%
0% 1% 2% 6% 9% 11% 12% 12% 12% 13% 14% 15% 15% 15%
0% 1% 11% 57% 100%100%100%100%100%100%100%100%100%100%
0% 63% 100%100%100%100%100%100%100%100%100%100%100%100%
1% 100%100%100%100%100%100%100%100%100%100%100%100%100%
1% 97% 100%100%100%100%100%100%100%100%100%100%100%100%
68% 100%100%100%100%100%100%100%100%100%100%100%100%100%

(a) Evaluated with t = 1

500
1000

1500
2500

5000
10000

15000
20000

25000
30000

35000
40000

45000
50000

training steps

Canon - RoPE(1L-2H-16D)
Canon(cst) - RoPE(1L-2H-16D)
RoPE(1L-2H-16D)
RoPE(1L-4H-32D)
RoPE(1L-8H-64D)
RoPE(1L-16H-128D)
RoPE(2L-2H-16D)
RoPE(2L-4H-32D)
RoPE(2L-8H-64D)
RoPE(2L-16H-128D)

0% 69% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 60% 97% 99% 100%100%100%100%100%100%100%100%100%100%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%
0% 0% 1% 43% 100%100%100%100%100%100%100%100%100%100%
0% 52% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 99% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 95% 100%100%100%100%100%100%100%100%100%100%100%100%
67% 100%100%100%100%100%100%100%100%100%100%100%100%100%

(b) Evaluated with t = 2

500
1000

1500
2500

5000
10000

15000
20000

25000
30000

35000
40000

45000
50000

training steps

Canon - RoPE(1L-2H-16D)
Canon(cst) - RoPE(1L-2H-16D)
RoPE(1L-2H-16D)
RoPE(1L-4H-32D)
RoPE(1L-8H-64D)
RoPE(1L-16H-128D)
RoPE(2L-2H-16D)
RoPE(2L-4H-32D)
RoPE(2L-8H-64D)
RoPE(2L-16H-128D)

0% 67% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 54% 97% 99% 100%100%100%100%100%100%100%100%100%100%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
0% 0% 0% 35% 100%100%100%100%100%100%100%100%100%100%
0% 42% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 99% 100%100%100%100%100%100%100%100%100%100%100%100%
0% 95% 100%100%100%100%100%100%100%100%100%100%100%100%
61% 100%100%100%100%100%100%100%100%100%100%100%100%100%

(c) Evaluated with t = 4

Figure 19: A trivial experiment for copying 500 tokens, evaluated only on correctly copying the first t tokens.

Task 1-hop-L and 2-hop-L. In the real-life experiment (Section 9), we evaluated models’ per-
formance on extremely simple 1-hop and 2-hop information retrieval tasks.

For the 1-hop-L task, we prepared five random birth year statements of the form “[name] was
born in the year of [year],” where names are generated as random combinations of first, middle,
and last names, and years are sampled uniformly from 1950 to 2009. The five sentences were
embedded into random Wikipedia documents of length L tokens, with each statement inserted
between sentences at up to five randomly chosen positions. Finally, the model was prompted with
“\n\nAnswer me: name was born in the year of” to test its ability to retrieve the birth year. This
setup closely replicates the needle-in-a-haystack task [28], but we intentionally made the task more
“natural English” by using birth years (commonly found in pretraining datasets like Wikipedia)
instead of abstract multi-digit numbers.

For the 2-hop-L task, three random birth year statements were prepared in the same format
as above. This was followed by three equivalence statements of the form “[name1] was born in the
same year as [name2],” where random names were generated such that the equivalences formed a
bijection between the two sets of three random names. To simplify the task, we did not shuffle the
ordering of the statements; the three equivalence statements always followed the three original ones.
These six sentences were then embedded into random Wikipedia documents of length L tokens,

28This is crucial to ensure that the model is generating the genuine probabilistic distribution of sentences; if using
temperature 0 for instance, the generation is always a fixed string, and accuracy would be either 0 or 100% forever.

35

inserted at up to six different positions between sentences, respecting their original order. At the
end, the model was prompted with “\n\nAnswer me: name was born in the year of” to test its
ability to infer and retrieve the correct birth year. To further assist the model, an instructional
statement was added at the beginning of the context. 29 This design represents arguably the
simplest possible and most natural 2-hop in-context reasoning task, yet even with L = 0, models
largely failed to perform, as demonstrated in Figure 17.

SlimPajama and FineWeb-edu 100B. The SlimPajama dataset is sourced directly from Hug-
gingface (cerebras/SlimPajama-627B), with the first 100M data samples selected. This subset
provides more than 100B training tokens, sufficient for our pretraining experiments. Similarly, the
FineWeb-Edu dataset is obtained from Huggingface (HuggingFaceFW/fineweb-edu), utilizing its
predefined 100B split, which contains more than 100B tokens for pretraining.

Following a standard pretraining protocol, the data is processed sequentially by tokenizing it
in the provided order. It is then concatenated into a single continuous text stream, from which
random subsequences of length 4096 are extracted to serve as training windows. These sampled
windows are used for pretraining across all architectures.

For each pretraining run, we use a total batch size of 48 and the AdamW optimizer with β1 = 0.9,
β2 = 0.98, and ϵ = 10−6. A weight decay of 0.03 is applied. Training is conducted with two learning
rates {0.001, 0.002} for Llama and GPT models, and with three learning rates {0.0005, 0.001, 0.002}
for linear models (Mamba, GLA, GatedDeltaNet) to provide a stronger comparison. For each
evaluation task, we report the best accuracy achieved across the two or three runs. Each model is
trained for 510,000 steps, yielding a total of 4096 × 48 × 510,000 = 100.2B tokens processed per
run.

To ensure fair comparisons across architectures, we fix the random seed during pretraining. This
guarantees that, under the same seed, all architectures are trained on identical data and in identical
order, even in cases where pretraining jobs are interrupted and resumed. This setup minimizes
potential discrepancies due to differences in training data and maximally ensures consistency.

For the Llama(RoPE) experiments, we additionally test across eight random seeds to evaluate
variability in performance. These results are presented in Figure 17.

SlimPajama 300B. We briefly tested a pretraining setup using 300B tokens from SlimPajama
with a 1.7B-parameter Llama model (24 layers, 24 heads, 2304 dimensions), both with and without
Canon layers. Training utilized three learning rates {0.0005, 0.001, 0.002}, a batch size of 128,
575,000 steps, and a gradient accumulation factor of 5. The results were similarly noisy to the
100B pretraining case (e.g., models failed at 2-hop reasoning), so we excluded them from Figure 17
for clarity. However, we include their Babilong results in Figure 25. Unfortunately, this remains
the largest experiment we are able to support at the moment.

C Details on Architectures Used

Llama/GPT Models. In this paper, “Llama(RoPE)” refers to the Huggingface implementation
LlamaForCausalLM, which employs rotary embeddings across all hidden dimensions and utilizes
gated MLP layers. We did not enable group-query attention, as this study focuses on smaller-scale
models. The intermediate size is set to 8d

3 , ensuring that each MLP layer contains 8d2 trainable
parameters, consistent with standard MLP layers. “Llama(NoPE)” refers to the same architecture
with rotary embedding completely disabled. “Llama(RoPE) ˇ “” refers to the version where rotary

29“You will be asked questions about people’s birth years, and the birth year descriptions are hidden in some
random text. Some people’s birth years are directly given, while others are given in the form that ‘name1’ was born
in the same year as ‘name2’. ”

36

embeddings are applied to only a quarter of the dimensions. The variants ˇ “, ˇ “ ˇ “, and ˇ “ ˇ “ ˇ “represent
differing fractions of dimensionality on which RoPE is enabled, as described in the main paper.

For direct comparisons, “GPT2(RoPE)” refers to the Llama architecture with gated MLP layers
replaced by standard MLP layers. The intermediate size in these models is set to 4d, ensuring that
each MLP layer contains 8d2 trainable parameters.30

We denote “GPT2(RoPE,R2)” as the GPT2(RoPE) model with its silu activation replaced
by ReLU2, following the design proposed in Primer [57]. Similarly, “Llama(RoPE,R2)” refers to
Llama(RoPE) with ReLU2 in place of silu.

Alibi and H-Alibi. For ALiBi [44], we follow the original recommendation of using a geometric
sequence 2−8/n for an n-head Transformer, which determines how each head is biased toward local
context. For H-Alibi [30], we use their proposed strategy of restricting the h-th head to attend
only to the nearest h tokens, and applied to half of the heads. (We briefly tested applying this to
one-third of the heads instead, but observed slightly worse performance.)

Mamba Models. For “Mamba2,” we use the Huggingface implementation Mamba2ForCausalLM,
with recommended configuration parameters:

ssm state size=64, num heads=16, and head dim=hidden size * 2 / num heads.

This setup ensures each Mamba layer has 6d2 + o(d2) trainable parameters. We briefly tested
num heads=8 but observed worse results, and also tested “Mamba1,” which consistently underper-
formed compared to Mamba2. For these reasons, neither configuration is included in this paper.
The model initialization range follows the default settings provided in the implementation.

For “Mamba2(mlp),” we use the same Huggingface implementation but alternate between
Mamba SSM layers and gated MLP layers. The intermediate size for the MLP layers is set to
2d, ensuring each MLP layer contains 6d2 trainable parameters. This ensures that ℓ-layer d-
dimensional Llama(RoPE) and Mamba2(mlp), as well as 2ℓ-layer d-dimensional Mamba2, have
comparable parameter counts.

Mamba1. We briefly tested Mamba1 and found it consistently outperformed by Mamba2 in our
pretraining playground, so we excluded it from main results. Notably, removing its conv1d layer
also degrades Mamba1 to GLA-level performance.

Mimetic initialization. Following [63], we enabled A ≈ 1 (via c=8), ∆ ≈ 1 (via b∆=0.54),
W⊤

C WB ≈ I, and conv1d ≈ I. We also tested c=4 and c=2 but observed no improvement.

GLA Models. For Gated Linear Attention (GLA), we use the official GitHub implementation.31

The default configuration uses 4 linear attention heads, as suggested in their implementation. We
briefly tested configurations with 8 attention heads but found that these consistently degraded
performance. The default GLA implementation has conv1d disabled (the functionality was not
part of the original publication [68]), although their codebase supports conv1d, which we explicitly
tested in this paper.

For GLA(elu) experiments in the ablation studies, we replaced the default feature map with
elu(x) + 1, and conducted evaluations with and without conv1d and Canon layers.

Unless otherwise stated (e.g., in Task Capo), we do not tie weights between the embedding and
output layers in any of the architectures (e.g., Llama, Mamba, GLA). Additionally, no tokenizers
are used during pretraining except for Task Capo.

30The original GPT2 architecture differs from Llama in other minor ways, such as using GeLU activation and
slightly different initialization. We do not investigate these small architectural differences in this paper.

31See https://github.com/fla-org/flash-linear-attention. From March to May 2025, the repo authors up-
dated the initializer range to 0.006 (from the previously popular 0.02), which we found negatively impacted perfor-
mance for our tested model sizes. For our experiments, we reverted to 0.02. The repo authors also restored this
setting to 0.02 on May 3, 2025.

37

https://github.com/fla-org/flash-linear-attention

Task Capo. The knowledge capacity task involves pretraining fake biographies, following the
method described in [7]. For consistency, GPT2Tokenizer is used throughout, along with weight
tying between embedding and output layers.32

Since Capo evaluates bit-per-parameter knowledge capacity, we scale both model and data sizes
more aggressively to assess scaling behavior. Following [7], we use the notation ℓ-h to denote Llama
with ℓ layers, hidden size 64h, and h heads, extending this convention to GLA and Mamba2.33

For GPT2 experiments in Figure 11, we use the original GPT2 architecture with added RoPE,
consistent with [7]. Mixture-of-Experts (MoE) experiments use the tutel [29] package with 32
standard MLP experts, configured with topk = 1 and cap factor = 2.

Real-Life Experiments. For pretraining experiments on SlimPajama and FineWeb-Edu, we
use all the architectures listed above alongside the Llama2 tokenizer (with vocab size 32,000) [62].
Weight tying is disabled to maintain consistency with prior works (e.g., [9, 69] and references
therein). We include GatedDeltaNet [69] in the real-life experiments, using its official GitHub
implementation with head dimensions set to = 3d

4·num heads , ensuring that each block layer contains
12d2 + o(d2) trainable parameters for direct comparison with other architectures.

The architectural configurations used in the real-life experiments (approximately 1.35B param-
eters each) are summarized below:

� Llama(RoPE/NoPE): 24 layers, 32 heads, 64 dimensions per head (total hidden size: 2048).

� GLA: 24 layers, 4 heads, total hidden size: 2048.

� Mamba2: 48 layers, 16 heads, total hidden size: 2048.

� Mamba2(mlp): 24 layers, 16 heads, total hidden size: 2048.

� GatedDeltaNet: 24 layers, 12 heads, total hidden size: 2048.

Canon Implementations. Canon layers in this paper are implemented using PyTorch’s nn.Conv1D
with kernel size 4, zero padding, and default initialization. A good source of its CUDA fast imple-
mentation is available in the fla-org repository.34 Canon layers are applied after layer normaliza-
tion (if present, e.g., Canon-A/C) and before any non-linearity (if present, e.g., Canon-B/D).

We refer to cst-Canon as the constant, untrained version of Canon(res), where the convolution
weights are fixed to PyTorch’s default values. We plan to open-source our synthetic playground
and evaluation toolkit after this paper’s release, following code cleanup and documentation.

32Weight tying minimizes capacity loss in smaller models, although this effect is minor.
33In GLA, ℓ-h refers to ℓ layers with hidden size 64h and 4 fixed attention heads, while in Mamba2, ℓ-h corresponds

to 2ℓ layers with hidden size 64h. Thus, the ℓ-h convention ensures model sizes remain comparable across architectures
for controlled evaluations.

34https://github.com/fla-org/flash-linear-attention/blob/main/fla/modules/convolution.py

38

https://github.com/fla-org/flash-linear-attention/blob/main/fla/modules/convolution.py

D Missing Experiments

D.1 Intentionally Omitted Experiments

In this sub-section, we present missing figures that were intentionally omitted from the main body
of the paper for the sake of clarity and conciseness.

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/34% 1/50% 1/4% 0/1%
0/27% 0/0% 0/12% 0/0%
0/2% 0/56% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 97/100% 99/100% 100/100%
98/100% 92/99% 95/100% 95/100%
75/99% 97/100% 85/100% 90/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

30/77% 8/94% 61/98% 98/100%
56/92% 28/82% 0/84% 3/75%
2/49% 11/51% 0/77% 0/26%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

98/100% 98/100% 99/100% 97/99%
100/100% 95/100% 97/100% 93/100%
61/100% 97/100% 99/100% 97/100%

Task Depo1(K=8, k=8/4)
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 2/1% 1/1% 30/99%
1/1% 1/90% 1/3% 21/96%
1/2% 1/92% 1/3% 1/50%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 100/100% 97/100% 99/100%
97/100% 99/100% 96/100% 97/100%
85/100% 99/100% 98/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

67/99% 99/100% 99/100% 99/100%
86/100% 97/100% 84/99% 96/100%
89/100% 96/100% 96/100% 96/99%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

97/100% 97/100% 99/100% 98/100%
86/99% 96/100% 98/100% 98/100%
84/99% 96/100% 91/100% 95/100%

Task Depo2(K=16, k=16/8)
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

83.7% 93.8% 91.3% 96.5%
62.9% 84.5% 81.2% 90.7%
47.9% 82.2% 69.7% 84.5%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

75.4% 86.0% 83.4% 91.7%
36.0% 64.7% 57.9% 79.4%
21.1% 44.5% 34.7% 65.1%

Task Brevo1
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.9% 91.2% 88.6% 93.3%
66.3% 78.5% 76.8% 82.5%
34.1% 51.1% 53.4% 70.4%

Task Brevo1
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.1% 95.6% 92.2% 97.1%
75.4% 87.7% 80.1% 93.5%
55.1% 82.5% 69.3% 88.1%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

82.3% 91.3% 87.4% 95.1%
58.7% 81.8% 69.3% 91.1%
40.1% 68.3% 57.5% 79.8%

Task Brevo2
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

84.2% 94.2% 89.8% 95.9%
62.0% 86.0% 81.2% 91.4%
49.2% 75.5% 63.2% 84.4%

Task Brevo2
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.4% 75.5% 84.5% 85.2%
55.6% 53.8% 52.5% 46.5%
26.3% 19.7% 20.9% 41.6%

Task Mano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 99.2% 99.6%
89.8% 88.5% 98.2% 99.2%
83.7% 83.6% 88.8% 85.3%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.4% 99.2% 99.5% 99.8%
92.4% 94.0% 96.9% 98.9%
94.5% 93.2% 94.1% 98.1%

Task Mano
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

81.4% 87.1% 92.8% 98.0%
76.9% 86.7% 96.2% 92.1%
15.7% 44.5% 69.2% 72.5%

Task Mano
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 96.3% 93.4% 97.6%
74.1% 91.4% 82.3% 90.3%
64.0% 75.1% 60.0% 79.1%

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.2% 97.5% 96.0% 98.1%
81.4% 90.1% 85.9% 92.6%
66.0% 77.9% 76.1% 78.9%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.0% 96.4% 96.5% 98.1%
79.6% 89.7% 85.6% 92.1%
67.4% 79.4% 77.1% 84.4%

Task Lano
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 95.0% 94.8% 96.4%
72.5% 87.2% 78.2% 90.7%
64.3% 74.9% 68.5% 73.9%

Task Lano
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00095 0.00050 0.00073 0.00038
0.00135 0.00056 0.00095 0.00057
0.00232 0.00156 0.00235 0.00131

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00067 0.00041 0.00053 0.00035
0.00104 0.00060 0.00080 0.00050
0.00217 0.00145 0.00156 0.00129

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00068 0.00050 0.00050 0.00034
0.00113 0.00066 0.00080 0.00054
0.00208 0.00134 0.00146 0.00106

Task Lano
Llama(RoPE) - cst-Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00098 0.00068 0.00066 0.00053
0.00144 0.00076 0.00114 0.00060
0.00229 0.00165 0.00197 0.00164

Task Lano
GPT2(RoPE) - Canon-ABCD(res)

Figure 20: Columns 1,2,3: Constant Canon implementation (random, non-trained average of the past 3 tokens,
denoted cst-Canon) already achieves strong performance, clearly outperforming vanilla Llama.
Columns 1,2,4: Canon layers also perform strongly on GPT2 models (with standard MLP). Our play-
ground reveals standard MLP is slightly weaker than gated MLP, especially in knowledge manipulation
(cf. Result 5).

39

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/34% 1/50% 1/4% 0/1%
0/27% 0/0% 0/12% 0/0%
0/2% 0/56% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/1% 19/89% 0/14% 10/87%
0/1% 1/26% 0/3% 0/0%
0/0% 0/22% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
GPT2(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/3% 0/18% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%
0/0% 0/90% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/42% 0/24% 1/0% 0/0%
0/0% 0/22% 0/0% 0/0%
0/4% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
GPT2(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 97/100% 99/100% 100/100%
98/100% 92/99% 95/100% 95/100%
75/99% 97/100% 85/100% 90/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

98/100% 98/100% 99/100% 97/99%
100/100% 95/100% 97/100% 93/100%
61/100% 97/100% 99/100% 97/100%

Task Depo1(K=8, k=8/4)
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 66/100% 99/100% 97/100%
59/100% 91/100% 95/99% 99/100%
20/99% 23/100% 0/91% 69/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

72/100% 80/100% 98/100% 97/100%
100/100% 74/100% 82/100% 91/100%
41/99% 96/100% 88/100% 92/100%

Task Depo1(K=8, k=8/4)
GPT2(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 2/1% 1/1% 30/99%
1/1% 1/90% 1/3% 21/96%
1/2% 1/92% 1/3% 1/50%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/2% 1/7% 2/2%
1/46% 1/22% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
GPT2(RoPE) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/3% 1/5% 1/28% 21/92%
1/1% 1/24% 1/1% 1/99%
1/1% 1/2% 1/1% 1/84%

Task Depo2(K=16, k=16/8)
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/3% 1/54% 2/38% 1/85%
1/1% 1/1% 1/1% 1/1%
1/1% 1/37% 1/1% 97/100%

Task Depo2(K=16, k=16/8)
GPT2(RoPE,R2) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 100/100% 97/100% 99/100%
97/100% 99/100% 96/100% 97/100%
85/100% 99/100% 98/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

97/100% 97/100% 99/100% 98/100%
86/99% 96/100% 98/100% 98/100%
84/99% 96/100% 91/100% 95/100%

Task Depo2(K=16, k=16/8)
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

10/90% 94/100% 82/100% 99/100%
72/100% 92/100% 77/99% 100/100%
64/98% 77/99% 96/100% 100/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

94/99% 99/100% 99/100% 99/100%
95/100% 95/100% 81/100% 99/100%
87/100% 98/100% 96/100% 99/100%

Task Depo2(K=16, k=16/8)
GPT2(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

59.3% 82.8% 64.2% 85.8%
6.9% 50.4% 26.0% 67.5%
5.8% 25.0% 9.7% 37.3%

Task Brevo1
GPT2(RoPE) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

32.7% 87.5% 67.2% 88.4%
38.0% 36.1% 15.5% 64.0%
16.9% 25.4% 7.2% 20.7%

Task Brevo1
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

37.7% 72.5% 71.8% 82.6%
9.2% 45.7% 16.1% 62.5%
5.4% 20.8% 5.5% 24.2%

Task Brevo1
GPT2(RoPE,R2) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

83.7% 93.8% 91.3% 96.5%
62.9% 84.5% 81.2% 90.7%
47.9% 82.2% 69.7% 84.5%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.9% 91.2% 88.6% 93.3%
66.3% 78.5% 76.8% 82.5%
34.1% 51.1% 53.4% 70.4%

Task Brevo1
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

82.8% 91.7% 90.1% 95.6%
69.8% 82.3% 72.0% 86.4%
35.5% 68.4% 57.5% 78.3%

Task Brevo1
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.4% 89.1% 85.1% 93.7%
56.2% 76.2% 75.9% 83.8%
33.8% 57.2% 51.7% 72.2%

Task Brevo1
GPT2(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

70.9% 85.0% 80.3% 93.7%
44.8% 66.3% 63.4% 81.4%
24.7% 55.9% 43.4% 76.2%

Task Brevo2
GPT2(RoPE) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

67.0% 90.8% 80.8% 94.7%
33.8% 87.4% 54.3% 88.8%
23.9% 70.7% 37.4% 77.1%

Task Brevo2
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

60.4% 90.4% 77.4% 93.7%
45.7% 82.3% 66.4% 88.8%
25.1% 63.6% 39.2% 75.5%

Task Brevo2
GPT2(RoPE,R2) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.1% 95.6% 92.2% 97.1%
75.4% 87.7% 80.1% 93.5%
55.1% 82.5% 69.3% 88.1%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

84.2% 94.2% 89.8% 95.9%
62.0% 86.0% 81.2% 91.4%
49.2% 75.5% 63.2% 84.4%

Task Brevo2
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

88.4% 94.0% 91.9% 96.7%
69.4% 87.0% 83.4% 92.5%
56.1% 75.2% 65.7% 87.3%

Task Brevo2
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.3% 92.9% 90.7% 95.6%
71.6% 86.6% 78.9% 92.0%
54.6% 78.7% 64.5% 83.9%

Task Brevo2
GPT2(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.4% 75.5% 84.5% 85.2%
55.6% 53.8% 52.5% 46.5%
26.3% 19.7% 20.9% 41.6%

Task Mano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

33.1% 22.3% 49.2% 40.7%
20.9% 23.1% 21.8% 12.2%
11.8% 7.4% 20.5% 11.4%

Task Mano
GPT2(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

40.0% 38.4% 63.9% 64.7%
15.1% 26.9% 52.1% 33.2%
7.6% 14.4% 31.3% 15.0%

Task Mano
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

63.4% 70.2% 77.9% 83.4%
7.5% 37.5% 72.4% 77.0%
18.5% 26.6% 25.5% 67.3%

Task Mano
GPT2(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 99.2% 99.6%
89.8% 88.5% 98.2% 99.2%
83.7% 83.6% 88.8% 85.3%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

81.4% 87.1% 92.8% 98.0%
76.9% 86.7% 96.2% 92.1%
15.7% 44.5% 69.2% 72.5%

Task Mano
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.6% 98.2% 98.4% 99.1%
87.3% 87.2% 93.8% 96.1%
55.2% 76.6% 81.7% 90.6%

Task Mano
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.9% 98.8% 98.9% 98.8%
94.4% 97.1% 95.3% 94.6%
65.6% 95.0% 95.0% 96.9%

Task Mano
GPT2(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 96.3% 93.4% 97.6%
74.1% 91.4% 82.3% 90.3%
64.0% 75.1% 60.0% 79.1%

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

78.1% 93.0% 86.5% 94.8%
56.6% 82.4% 71.1% 82.9%
46.1% 69.6% 47.3% 71.8%

Task Lano
GPT2(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

93.4% 96.8% 95.7% 96.6%
80.2% 87.9% 79.4% 87.3%
51.3% 68.8% 58.1% 74.5%

Task Lano
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

94.5% 96.5% 94.8% 97.4%
80.8% 90.3% 85.3% 90.6%
62.8% 80.3% 70.2% 84.7%

Task Lano
GPT2(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.2% 97.5% 96.0% 98.1%
81.4% 90.1% 85.9% 92.6%
66.0% 77.9% 76.1% 78.9%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 95.0% 94.8% 96.4%
72.5% 87.2% 78.2% 90.7%
64.3% 74.9% 68.5% 73.9%

Task Lano
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.4% 97.6% 96.7% 97.8%
78.4% 91.6% 83.6% 91.2%
60.3% 74.6% 70.7% 81.9%

Task Lano
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.5% 97.5% 96.7% 97.4%
81.6% 89.9% 86.7% 92.1%
67.6% 76.3% 72.6% 82.5%

Task Lano
GPT2(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00095 0.00050 0.00073 0.00038
0.00135 0.00056 0.00095 0.00057
0.00232 0.00156 0.00235 0.00131

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00196 0.00089 0.00134 0.00072
0.00235 0.00101 0.00156 0.00092
0.00362 0.00184 0.00343 0.00173

Task Lano
GPT2(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00076 0.00042 0.00054 0.00047
0.00105 0.00074 0.00105 0.00076
0.00321 0.00195 0.00265 0.00150

Task Lano
Llama(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00066 0.00045 0.00063 0.00041
0.00103 0.00060 0.00081 0.00055
0.00231 0.00127 0.00184 0.00099

Task Lano
GPT2(RoPE,R2) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00067 0.00041 0.00053 0.00035
0.00104 0.00060 0.00080 0.00050
0.00217 0.00145 0.00156 0.00129

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00098 0.00068 0.00066 0.00053
0.00144 0.00076 0.00114 0.00060
0.00229 0.00165 0.00197 0.00164

Task Lano
GPT2(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00060 0.00037 0.00044 0.00037
0.00116 0.00053 0.00089 0.00055
0.00253 0.00157 0.00184 0.00120

Task Lano
Llama(RoPE,R2) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00060 0.00043 0.00047 0.00038
0.00099 0.00062 0.00081 0.00057
0.00208 0.00156 0.00175 0.00119

Task Lano
GPT2(RoPE,R2) - Canon-ABCD(res)

gated MLP
(silu)

standard MLP
(silu)

gated MLP
(relu2)

standard MLP
(relu2)

gated MLP
(silu) + Canon

standard MLP
(silu) + Canon

gated MLP
(relu2) + Canon

standard MLP
(relu2) + Canon

Figure 21: Effect of ReLU2 activation on standard vs. gated MLP. Columns 1�2, 5�6: gated MLP outperforms
standard MLP with silu. Columns 2�4, 6�8: adding ReLU2 to standard MLP yields slight gains.
Columns 1�3, 5�7: adding ReLU2 to gated MLP hurts performance.

40

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

97/100% 92/100% 73/89% 94/100%
57/97% 54/93% 92/99% 99/99%
76/99% 53/99% 16/66% 97/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 97/100% 99/100% 100/100%
98/100% 92/99% 95/100% 95/100%
75/99% 97/100% 85/100% 90/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

65/99% 92/100% 78/99% 97/100%
69/100% 94/100% 74/99% 70/97%
94/100% 74/100% 92/99% 6/99%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

97/100% 98/100% 98/100% 99/100%
94/100% 71/100% 97/100% 100/100%
93/100% 70/99% 71/100% 98/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 99/100% 99/100% 100/100%
96/99% 99/100% 99/100% 99/100%
99/100% 99/100% 98/100% 99/100%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

91/99% 97/100% 98/100% 99/100%
98/100% 98/100% 99/100% 98/100%
71/98% 90/100% 94/99% 96/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 100/100% 97/100% 99/100%
97/100% 99/100% 96/100% 97/100%
85/100% 99/100% 98/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

94/99% 99/100% 99/100% 93/100%
66/99% 99/100% 98/100% 97/100%
84/100% 96/100% 96/100% 96/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

99/100% 99/100% 98/100% 100/100%
98/100% 99/100% 99/100% 99/100%
85/99% 99/100% 96/100% 99/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

96/100% 85/99% 86/100% 99/100%
94/100% 86/99% 99/100% 99/100%
90/100% 98/100% 93/100% 96/100%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.6% 88.7% 88.3% 91.3%
51.3% 72.4% 69.9% 75.7%
24.8% 49.1% 41.2% 58.8%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

83.7% 93.8% 91.3% 96.5%
62.9% 84.5% 81.2% 90.7%
47.9% 82.2% 69.7% 84.5%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

90.4% 94.6% 91.7% 96.3%
72.7% 84.0% 83.2% 91.1%
58.3% 77.6% 61.2% 84.7%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

90.0% 93.7% 91.8% 96.1%
69.0% 83.6% 79.5% 91.5%
42.3% 63.8% 72.5% 79.7%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.8% 94.4% 91.1% 96.2%
63.9% 85.8% 75.5% 92.2%
42.0% 75.3% 58.2% 84.9%

Task Brevo1
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.5% 94.5% 92.3% 95.4%
66.0% 85.3% 79.3% 90.5%
44.6% 75.5% 68.5% 87.8%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.1% 95.6% 92.2% 97.1%
75.4% 87.7% 80.1% 93.5%
55.1% 82.5% 69.3% 88.1%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

85.2% 94.1% 92.7% 96.3%
68.8% 87.9% 82.0% 89.2%
51.2% 82.1% 74.2% 85.9%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

89.6% 96.4% 94.7% 97.3%
74.5% 91.2% 84.9% 95.5%
56.0% 80.3% 73.0% 91.7%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.4% 93.2% 89.0% 96.1%
61.2% 84.0% 75.2% 91.7%
40.4% 56.0% 56.3% 79.9%

Task Brevo2
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

95.1% 99.3% 99.3% 99.5%
66.0% 94.6% 97.1% 98.8%
63.7% 82.8% 91.4% 83.0%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 99.2% 99.6%
89.8% 88.5% 98.2% 99.2%
83.7% 83.6% 88.8% 85.3%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.9% 98.3% 97.6% 99.7%
80.9% 97.1% 97.5% 99.1%
69.1% 96.7% 93.6% 97.9%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.3% 99.4% 99.0% 99.6%
79.2% 96.8% 98.0% 96.3%
85.1% 77.9% 72.4% 88.0%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.7% 98.9% 99.3% 99.3%
83.1% 90.1% 95.9% 98.1%
53.7% 55.5% 89.4% 94.3%

Task Mano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.6% 98.0% 97.2% 98.3%
88.2% 92.0% 88.6% 94.3%
75.2% 87.1% 83.0% 86.7%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.2% 97.5% 96.0% 98.1%
81.4% 90.1% 85.9% 92.6%
66.0% 77.9% 76.1% 78.9%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

93.8% 97.0% 96.2% 97.6%
77.7% 88.6% 86.0% 91.5%
58.4% 76.6% 72.8% 81.1%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.0% 97.3% 96.6% 97.5%
82.0% 88.9% 87.8% 93.3%
71.5% 81.9% 74.1% 84.5%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

87.9% 91.9% 88.5% 92.5%
55.1% 70.3% 58.6% 78.3%
33.5% 51.0% 37.2% 53.1%

Task Lano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00048 0.00034 0.00042 0.00028
0.00071 0.00052 0.00065 0.00040
0.00155 0.00090 0.00113 0.00091

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00067 0.00041 0.00053 0.00035
0.00104 0.00060 0.00080 0.00050
0.00217 0.00145 0.00156 0.00129

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00078 0.00047 0.00058 0.00042
0.00116 0.00071 0.00080 0.00055
0.00270 0.00157 0.00173 0.00119

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00060 0.00045 0.00048 0.00037
0.00099 0.00070 0.00071 0.00046
0.00179 0.00122 0.00162 0.00106

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00129 0.00090 0.00117 0.00084
0.00253 0.00161 0.00223 0.00116
0.00509 0.00318 0.00452 0.00307

Task Lano
Llama(NoPE) - Canon-ABCD(res)

Figure 22: Transformer+Canon with varying RoPE configurations. From left to right: (1) RoPE; (2) RoPE ˇ “: half
of heads each with half RoPE dimensions; (3) RoPE ˇ “ ˇ “: a quarter of heads with full RoPE dimensions;
(4) RoPE ˇ “ ˇ “ ˇ “: all heads each with quarter RoPE dimensions; (5) NoPE.

Conclusion: Canon layers eliminate the need for extensive RoPE usage, and reducing RoPE usage to
1/4 is even preferable, outperforming both full RoPE and NoPE setups. Among these reduced RoPE
variants, RoPE ˇ “ achieves slightly better overall performance.

Elu + Canon-ABCD

Elu + co
nv1d

Elu + original

Id + Canon-ABCD

Id + co
nv1d

Id + original

N=225 - NoRes

N=225 - Res

N=300 - NoRes

N=300 - Res

N=375 - NoRes

N=375 - Res

1/14% 0/8% 1/10% 33/69% 0/15% 2/30%

34/81% 58/93%

0/8% 0/1% 0/4% 16/45% 0/2% 0/15%

3/30% 41/83%

0/2% 0/1% 0/2% 1/12% 0/0% 0/8%

4/39% 12/55%

Task Depo1(K=4, k=4/2) - Ablation study - GLA

Elu + Canon-ABCD

Elu + co
nv1d

Elu + original

Id + Canon-ABCD

Id + co
nv1d

Id + original

N=70 - NoRes
N=70 - Res

N=90 - NoRes
N=90 - Res

N=110 - NoRes
N=110 - Res

69.0% 1.7% 4.4% 89.1% 2.6% 24.9%
91.4% 97.2%
53.1% 0.8% 0.9% 65.6% 2.8% 1.0%
63.1% 88.4%
8.5% 0.1% 0.4% 21.3% 0.9% 1.3%
60.1% 72.1%

Task Brevo1 - Ablation study - GLA

Elu + Canon-ABCD

Elu + co
nv1d

Elu + original

Id + Canon-ABCD

Id + co
nv1d

Id + original

L=10 - NoRes
L=10 - Res

L=13 - NoRes
L=13 - Res

L=16 - NoRes
L=16 - Res

98.2% 92.2% 54.2% 98.9% 13.2% 61.7%
96.4% 97.8%
94.8% 78.4% 31.5% 95.3% 7.2% 41.5%
79.4% 97.9%
86.7% 56.6% 8.6% 94.0% 7.5% 17.5%
32.7% 65.6%

Task Mano - Ablation study - GLA

Elu + Canon-ABCD

Elu + co
nv1d

Elu + original

Id + Canon-ABCD

Id + co
nv1d

Id + original

N=75 - NoRes

N=75 - Res

N=100 - NoRes

N=100 - Res

N=125 - NoRes

N=125 - Res

19/58% 4/25% 2/9% 84/97% 1/3% 2/14%

69/89% 73/92%

10/50% 1/4% 1/1% 45/80% 1/10% 1/18%

50/75% 39/82%

14/45% 1/1% 1/3% 38/82% 1/3% 1/13%

32/72% 46/77%

Task Depo2(K=4, k=4/2) - Ablation study - GLA

Elu + Canon-ABCD

Elu + co
nv1d

Elu + original

Id + Canon-ABCD

Id + co
nv1d

Id + original

N=30 - NoRes
N=30 - Res

N=40 - NoRes
N=40 - Res

N=50 - NoRes
N=50 - Res

81.1% 6.9% 64.5% 83.0% 45.6% 54.9%
48.7% 91.8%
52.4% 1.2% 31.4% 60.6% 40.9% 7.3%
75.2% 85.9%
4.0% 0.9% 0.9% 43.1% 1.9% 1.4%
3.1% 41.0%

Task Brevo2 - Ablation study - GLA

Elu + Canon-ABCD

Elu + co
nv1d

Elu + original

Id + Canon-ABCD

Id + co
nv1d

Id + original

cfg3f - NoRes
cfg3f - Res

cfg3j - NoRes
cfg3j - Res

cfg3k - NoRes
cfg3k - Res

81.6% 88.9% 85.7% 84.9% 92.0% 74.6%
92.1% 93.3%
59.0% 57.3% 27.8% 69.9% 81.0% 13.8%
83.7% 81.9%
39.7% 38.5% 20.5% 58.2% 63.7% 16.9%
62.5% 71.0%

Task Lano - Ablation study - GLA

Figure 23: Ablation study on 12-layer, 768-dimensional GLA with Canon/conv1d layers, residual vs. non-residual,
identity feature map vs non-linear (ϕ(x) = elu(x) + 1) feature map.

41

LMB PIQA
Hella Wino

ARC-e
ARC-c SIQA

BoolQ
Wiki ppl

LMB ppl
FDA

FDA2
SWDE

SWDE2 NQ NQ2
Squad

Squad2
Triv

iaQA
Triv

iaQA2
Drop

Drop2
1-hop-0k

1-hop-1k
1-hop-2k

1-hop-3k
1-hop-4k

1-hop-5k
1-hop-6k

2-hop-0k
2-hop-1k

2-hop-2k
2-hop-3k

2-hop-4k
2-hop-5k

2-hop-6k
GLA - Canon-ABCD(res) - seed 20
GLA - conv1d - seed 20
GLA - original(noconv1d) - seed 20
GatedDeltaNet - original(conv1d) - seed 20
Mamba2 - Canon-AB(no-res) - seed 20
Mamba2 - Canon-AB(res) - seed 20
Mamba2 - noconv1d - seed 20
Mamba2 - original(conv1d) - seed 20
Mamba2(mlp) - Canon-ABCD(res) - seed 20
Mamba2(mlp) - original(conv1d) - seed 20

GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - original - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - original - seed 20

Llama(NoPE) - Canon-ABCD(res) - seed 20
Llama(NoPE) - original - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20
Llama(RoPE) - original - seed 21
Llama(RoPE) - original - seed 22
Llama(RoPE) - original - seed 23
Llama(RoPE) - original - seed 24
Llama(RoPE) - original - seed 25
Llama(RoPE) - original - seed 26
Llama(RoPE) - original - seed 27

48.2% 72.6% 54.1% 57.9% 58.3% 28.5% 41.5% 62.0% 16.7 12.8 nan 65.8% 76.0% 51.8% 56.3% 30.9% 36.4% 36.7% 58.1% 59.7% 59.7% 21.4% 37.3% nan 73.7% 63.8% 47.9% 36.4% 24.3% 17.0% 12.6% nan 31.8% 32.2% 28.1% 29.3% 25.3% 19.6% 15.2%
48.2% 72.3% 53.3% 56.7% 56.9% 28.2% 40.5% 60.6% 16.7 12.5 nan 57.2% 74.5% 47.3% 55.8% 28.6% 35.9% 37.9% 59.6% 58.8% 59.4% 22.9% 35.3% nan 63.0% 50.9% 35.0% 22.7% 16.0% 10.6% 9.4% nan 34.2% 35.1% 27.8% 28.8% 25.9% 21.8% 15.7%
43.7% 71.2% 49.2% 54.7% 55.8% 26.6% 40.3% 61.7% 18.2 16.0 nan 57.8% 71.9% 41.7% 52.8% 27.5% 34.0% 35.1% 57.2% 57.3% 57.8% 20.0% 37.7% nan 77.6% 63.7% 37.4% 26.9% 17.8% 14.6% 11.9% nan 31.8% 29.8% 22.0% 23.0% 19.8% 17.5% 14.3%
49.3% 72.4% 55.1% 58.7% 60.6% 28.8% 40.8% 62.1% 16.0 11.2 nan 62.3% 76.0% 51.2% 52.8% 30.8% 36.5% 39.1% 61.3% 60.4% 61.7% 23.6% 40.5% nan 76.4% 68.9% 53.6% 41.3% 31.8% 23.2% 14.3% nan 33.1% 33.0% 28.7% 29.4% 21.7% 23.3% 17.6%
48.3% 72.3% 55.6% 57.3% 59.6% 31.3% 41.4% 62.4% 16.1 12.0 nan 63.3% 77.7% 44.5% 53.0% 30.2% 35.8% 37.1% 58.2% 60.7% 60.1% 21.4% 35.2% nan 75.9% 65.8% 46.2% 36.4% 26.0% 17.4% 12.5% nan 33.2% 33.4% 28.5% 27.2% 24.6% 21.1% 18.5%
50.2% 72.3% 57.3% 59.4% 60.4% 30.5% 41.8% 61.2% 15.4 10.5 nan 67.6% 77.1% 48.2% 57.2% 31.4% 37.4% 37.8% 58.0% 61.6% 61.7% 22.3% 38.7% nan 95.0% 88.1% 68.0% 50.2% 34.4% 21.3% 14.1% nan 34.8% 30.5% 28.0% 26.3% 24.2% 17.9% 15.3%
44.8% 71.2% 51.0% 54.8% 56.8% 27.9% 40.7% 62.1% 17.5 14.3 nan 48.2% 64.4% 44.0% 49.1% 27.1% 33.0% 33.6% 56.5% 55.7% 57.3% 21.9% 35.6% nan 49.2% 34.6% 21.3% 15.4% 12.6% 9.8% 8.3% nan 33.0% 32.8% 28.6% 27.2% 21.0% 14.4% 10.1%
49.5% 72.6% 57.0% 57.1% 60.5% 29.1% 41.0% 60.7% 15.5 11.9 nan 56.4% 74.3% 48.2% 55.7% 30.9% 37.2% 38.3% 58.6% 60.0% 59.8% 24.3% 38.6% nan 75.4% 64.8% 40.4% 27.8% 16.6% 12.0% 9.4% nan 34.0% 33.9% 31.4% 34.3% 26.8% 23.1% 20.8%
51.1% 73.3% 56.5% 57.6% 61.1% 30.5% 40.2% 62.3% 15.6 10.6 nan 63.9% 77.5% 47.8% 56.7% 30.3% 37.6% 36.5% 56.8% 60.5% 59.9% 22.4% 37.1% nan 78.3% 63.0% 46.9% 31.7% 22.0% 13.7% 8.5% nan 35.0% 31.7% 29.1% 30.2% 24.6% 20.3% 13.9%
48.5% 72.5% 56.6% 57.8% 59.2% 30.0% 40.9% 62.1% 15.8 11.8 nan 56.4% 72.1% 45.2% 51.0% 31.2% 35.2% 37.7% 57.8% 59.7% 60.2% 21.4% 37.8% nan 75.7% 65.2% 42.8% 30.7% 23.7% 15.5% 12.8% nan 34.3% 32.8% 28.6% 29.1% 21.7% 15.8% 11.6%

nan nan
49.4% 71.4% 54.9% 55.7% 60.5% 30.3% 40.8% 62.6% 15.8 13.3 nan 77.7% 86.7% 54.1% 58.5% 34.6% 40.4% 48.8% 61.4% 63.3% 60.4% 23.9% 38.4% nan 98.2% 98.1% 97.2% 94.7% 93.8% 26.4% 3.7% nan 34.2% 33.9% 34.1% 29.5% 32.4% 20.9% 3.5%
49.2% 71.8% 55.6% 57.0% 60.7% 28.8% 40.8% 62.2% 15.6 13.5 nan 78.1% 85.6% 58.1% 62.6% 32.9% 39.9% 47.0% 61.2% 63.2% 60.8% 26.6% 40.2% nan 98.2% 98.6% 99.0% 98.8% 96.2% 70.5% 19.7% nan 33.4% 33.1% 33.0% 29.2% 32.2% 27.5% 20.4%
52.2% 72.2% 56.8% 57.9% 59.6% 30.8% 42.1% 61.9% 15.3 10.4 nan 80.5% 87.5% 58.8% 60.1% 34.9% 42.2% 48.7% 61.1% 64.6% 61.6% 24.8% 41.2% nan 99.0% 98.8% 98.3% 97.0% 95.2% 84.0% 5.0% nan 34.1% 30.6% 32.5% 31.0% 32.6% 25.4% 5.4%
50.9% 71.8% 57.8% 57.4% 60.8% 31.2% 41.1% 61.6% 15.2 11.2 nan 77.8% 87.7% 55.4% 60.9% 35.2% 41.3% 48.8% 60.4% 64.4% 61.4% 26.4% 40.3% nan 99.8% 99.7% 99.8% 99.6% 99.1% 85.5% 44.6% nan 32.7% 32.5% 33.0% 29.7% 30.5% 27.4% 19.7%
48.9% 70.8% 55.0% 58.1% 58.4% 28.2% 40.9% 62.7% 16.0 12.5 nan 76.7% 86.1% 56.2% 60.5% 32.9% 36.2% 48.2% 62.2% 62.3% 60.2% 23.3% 40.9% nan 99.1% 98.7% 94.7% 89.2% 68.9% 3.9% 0.5% nan 32.8% 30.6% 29.3% 27.4% 28.5% 4.3% 0.3%
51.2% 71.8% 57.0% 58.6% 61.1% 29.6% 41.5% 62.1% 15.5 11.0 nan 81.0% 84.9% 56.9% 62.4% 34.9% 37.4% 47.9% 61.4% 65.3% 61.6% 25.1% 41.1% nan 97.9% 97.8% 94.2% 93.9% 82.2% 2.7% 0.9% nan 34.2% 33.2% 31.9% 28.4% 30.5% 7.2% 1.1%
50.3% 72.1% 56.1% 56.0% 60.9% 28.8% 40.9% 62.1% 15.7 12.7 nan 73.7% 86.7% 57.8% 61.9% 35.0% 37.2% 47.9% 61.8% 65.0% 61.4% 26.7% 42.8% nan 96.0% 93.4% 92.8% 86.1% 64.7% 3.6% 0.2% nan 33.6% 33.7% 32.1% 29.9% 28.7% 7.2% 0.0%

nan nan
48.8% 72.1% 55.7% 58.6% 58.1% 29.3% 41.6% 62.8% 15.6 12.9 nan 77.7% 86.5% 56.5% 59.9% 36.1% 40.2% 49.1% 58.3% 63.7% 59.8% 26.8% 40.9% nan 99.3% 99.4% 98.9% 98.8% 99.4% 88.9% 10.1% nan 36.1% 34.8% 35.0% 33.4% 34.3% 30.5% 2.6%
43.8% 70.3% 49.2% 54.5% 55.1% 27.3% 39.0% 60.4% 18.1 21.3 nan 78.6% 84.8% 55.7% 63.4% 32.9% 35.9% 45.1% 53.6% 59.1% 55.7% 23.7% 38.3% nan 98.8% 98.8% 99.0% 98.5% 98.6% 66.8% 1.7% nan 28.9% 28.5% 25.5% 29.1% 28.4% 18.8% 1.6%
51.4% 71.7% 56.5% 58.9% 60.1% 29.9% 40.8% 63.2% 15.4 10.4 nan 78.6% 87.2% 57.3% 61.5% 35.4% 40.0% 46.2% 59.0% 65.5% 61.7% 25.8% 41.9% nan 99.7% 99.8% 99.1% 98.6% 95.3% 60.8% 18.6% nan 35.0% 32.3% 33.0% 30.6% 34.5% 29.1% 10.4%
51.7% 71.7% 57.2% 57.8% 60.9% 29.4% 41.0% 63.1% 15.2 11.1 nan 80.1% 87.4% 56.5% 62.6% 35.2% 39.4% 46.3% 57.1% 63.9% 61.4% 26.8% 42.3% nan 99.2% 99.6% 99.7% 99.3% 99.6% 80.6% 35.8% nan 34.2% 33.0% 32.5% 29.5% 31.5% 27.9% 25.1%
52.0% 72.4% 56.5% 60.4% 58.4% 29.0% 40.9% 62.8% 15.4 11.0 nan 78.6% 86.9% 54.8% 58.4% 34.1% 35.0% 44.6% 56.2% 63.8% 60.6% 24.2% 39.6% nan 98.9% 99.1% 98.0% 95.6% 91.3% 7.0% 1.2% nan 34.4% 34.2% 33.3% 31.4% 30.8% 6.2% 1.2%
50.8% 72.3% 55.8% 57.2% 59.1% 29.6% 41.1% 63.5% 15.7 11.2 nan 79.6% 85.6% 50.7% 59.4% 32.5% 36.0% 44.4% 55.2% 62.5% 60.0% 25.2% 40.8% nan 98.8% 96.6% 90.7% 84.0% 73.1% 14.8% 0.4% nan 30.5% 31.0% 30.5% 28.5% 29.3% 14.9% 0.2%
55.0% 72.0% 56.0% 57.7% 58.9% 29.1% 41.1% 62.3% 15.7 9.8 nan 80.3% 85.2% 52.1% 60.8% 35.1% 36.7% 45.3% 59.7% 63.4% 59.7% 23.8% 39.4% nan 99.2% 98.8% 94.6% 94.2% 80.5% 5.1% 0.3% nan 31.1% 30.1% 29.7% 24.6% 26.1% 6.7% 0.0%
52.3% 71.6% 56.7% 58.2% 59.4% 31.0% 42.1% 62.9% 15.8 10.3 nan 81.3% 87.4% 54.8% 59.4% 32.7% 36.2% 46.3% 54.4% 63.7% 61.4% 25.1% 41.1% nan 98.9% 98.0% 93.5% 89.3% 78.0% 4.4% 0.4% nan 29.2% 29.9% 28.4% 28.5% 27.7% 8.9% 0.2%
52.8% 72.1% 56.0% 58.8% 58.5% 29.0% 41.0% 60.7% 15.7 10.2 nan 76.2% 85.5% 50.9% 59.7% 34.1% 37.5% 48.9% 57.3% 63.2% 61.4% 25.6% 39.1% nan 99.3% 98.8% 96.2% 92.6% 79.1% 9.7% 0.4% nan 31.8% 31.9% 30.8% 30.1% 27.2% 7.6% 0.2%
53.1% 71.9% 56.5% 59.2% 60.8% 29.2% 41.3% 61.8% 15.7 9.9 nan 81.5% 87.2% 52.6% 62.2% 34.3% 36.6% 45.5% 55.4% 62.3% 59.8% 22.3% 42.8% nan 97.4% 95.5% 93.0% 84.4% 80.3% 8.5% 0.3% nan 31.2% 30.1% 30.5% 26.5% 26.4% 10.1% 0.2%
50.7% 72.1% 56.0% 57.9% 59.5% 29.6% 40.8% 61.1% 15.7 11.3 nan 78.7% 85.4% 53.8% 63.5% 33.3% 34.4% 45.6% 57.3% 62.9% 60.3% 24.9% 38.6% nan 99.2% 96.6% 96.2% 91.1% 80.5% 9.4% 0.7% nan 30.4% 30.1% 28.4% 25.4% 26.9% 13.5% 0.4%
52.3% 71.2% 56.1% 58.7% 59.3% 29.0% 40.9% 60.8% 15.8 10.4 nan 79.4% 84.6% 54.5% 61.9% 35.3% 36.0% 45.6% 56.4% 64.2% 59.1% 27.4% 39.3% nan 97.8% 98.7% 98.6% 95.7% 87.0% 7.3% 1.2% nan 31.0% 29.5% 27.8% 23.6% 23.8% 12.1% 1.3%
53.3% 71.4% 56.2% 58.5% 59.1% 29.9% 40.9% 61.2% 15.7 10.1 nan 79.0% 86.6% 52.8% 62.3% 33.5% 35.3% 43.9% 55.4% 61.4% 60.6% 25.0% 40.3% nan 99.3% 98.0% 95.6% 89.4% 80.8% 6.2% 0.2% nan 31.6% 31.4% 28.3% 26.9% 27.8% 6.1% 0.0%

SlimPajama | 100B token pretrain | 1.3B models

LMB PIQA
Hella Wino

ARC-e
ARC-c SIQA

BoolQ
Wiki ppl

LMB ppl
FDA

FDA2
SWDE

SWDE2 NQ NQ2
Squad

Squad2
Triv

iaQA
Triv

iaQA2
Drop

Drop2
1-hop-0k

1-hop-1k
1-hop-2k

1-hop-3k
1-hop-4k

1-hop-5k
1-hop-6k

2-hop-0k
2-hop-1k

2-hop-2k
2-hop-3k

2-hop-4k
2-hop-5k

2-hop-6k
GLA - Canon-ABCD(res) - seed 20
GLA - conv1d - seed 20
GLA - original(noconv1d) - seed 20
GatedDeltaNet - original(conv1d) - seed 20
Mamba2 - Canon-AB(no-res) - seed 20
Mamba2 - Canon-AB(res) - seed 20
Mamba2 - noconv1d - seed 20
Mamba2 - original(conv1d) - seed 20
Mamba2(mlp) - Canon-ABCD(res) - seed 20
Mamba2(mlp) - original(conv1d) - seed 20

GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - original - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - original - seed 20

Llama(NoPE) - Canon-ABCD(res) - seed 20
Llama(NoPE) - original - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20
Llama(RoPE) - original - seed 21
Llama(RoPE) - original - seed 22
Llama(RoPE) - original - seed 23
Llama(RoPE) - original - seed 24
Llama(RoPE) - original - seed 25
Llama(RoPE) - original - seed 26
Llama(RoPE) - original - seed 27

47.8% 72.7% 56.8% 58.6% 72.4% 38.9% 41.6% 62.0% 17.6 12.7 nan 47.3% 61.9% 38.7% 50.0% 24.5% 30.9% 36.5% 59.9% 61.1% 61.3% 23.5% 39.8% nan 45.6% 26.2% 12.9% 9.8% 5.6% 4.8% 2.8% nan 33.2% 32.1% 24.6% 23.6% 18.4% 14.7% 11.1%
48.7% 73.1% 58.1% 58.3% 70.7% 38.0% 41.4% 64.4% 17.3 11.9 nan 38.9% 56.9% 38.5% 48.7% 25.1% 28.4% 35.6% 58.5% 61.0% 62.1% 21.9% 35.4% nan 59.1% 39.6% 23.9% 12.9% 6.1% 6.5% 4.0% nan 33.6% 29.8% 24.9% 22.1% 16.9% 14.1% 10.5%
43.5% 71.5% 54.6% 55.8% 70.3% 36.2% 40.7% 62.0% 19.2 16.0 nan 35.2% 45.1% 31.1% 41.3% 23.3% 28.1% 32.3% 57.3% 57.3% 61.7% 21.7% 35.4% nan 55.1% 34.0% 18.1% 10.3% 6.6% 4.3% 3.8% nan 31.4% 27.3% 20.4% 17.9% 13.7% 11.1% 7.7%
48.8% 73.8% 58.5% 59.2% 72.5% 40.1% 42.0% 63.7% 17.1 11.6 nan 44.4% 56.8% 38.0% 45.5% 27.0% 32.9% 36.9% 61.7% 63.4% 63.7% 22.3% 39.7% nan 42.9% 32.6% 18.5% 10.1% 6.9% 6.0% 4.1% nan 31.6% 32.7% 25.2% 23.7% 19.5% 16.4% 11.0%
46.8% 73.3% 58.9% 59.9% 72.3% 40.4% 43.1% 62.9% 17.1 12.6 nan 39.9% 50.5% 30.7% 41.5% 25.9% 30.9% 35.0% 56.4% 61.0% 62.1% 22.1% 37.2% nan 58.2% 44.9% 27.0% 16.6% 9.6% 6.8% 5.1% nan 32.3% 29.9% 24.7% 25.1% 17.3% 14.4% 11.0%
48.0% 73.8% 60.4% 60.3% 73.4% 40.2% 43.2% 63.2% 16.7 11.2 nan 41.7% 51.6% 34.8% 47.3% 26.6% 30.9% 35.4% 57.9% 64.6% 64.0% 22.3% 35.8% nan 62.0% 47.0% 24.4% 12.2% 7.9% 5.3% 3.3% nan 32.8% 30.1% 24.3% 23.8% 18.2% 14.0% 9.5%
44.6% 72.3% 56.2% 57.0% 71.1% 37.7% 41.6% 62.4% 18.2 13.7 nan 23.6% 30.7% 27.8% 33.5% 23.1% 28.1% 31.8% 56.2% 62.0% 63.2% 20.0% 33.5% nan 50.0% 32.6% 18.0% 9.1% 6.3% 4.6% 3.2% nan 30.3% 28.7% 22.9% 20.5% 14.2% 11.6% 9.9%
48.5% 73.6% 60.3% 60.3% 73.1% 41.3% 42.3% 63.5% 16.6 11.8 nan 39.5% 49.6% 33.8% 42.7% 27.0% 31.3% 36.7% 57.0% 61.5% 62.7% 22.6% 38.7% nan 51.8% 38.4% 19.4% 13.1% 6.4% 5.5% 3.2% nan 33.4% 32.3% 24.8% 24.3% 20.8% 15.1% 13.6%
48.3% 73.7% 60.0% 60.7% 73.0% 41.6% 42.5% 64.7% 16.7 11.3 nan 34.4% 50.9% 36.2% 48.0% 25.6% 32.4% 35.0% 59.9% 63.0% 63.6% 22.9% 39.1% nan 63.8% 46.5% 20.1% 11.1% 7.7% 4.7% 3.4% nan 31.8% 30.5% 26.2% 24.5% 19.7% 15.5% 10.0%
47.3% 74.3% 60.0% 59.6% 73.0% 40.4% 42.2% 64.7% 16.8 11.6 nan 31.2% 42.4% 32.7% 37.7% 25.5% 31.6% 36.4% 58.9% 62.3% 63.8% 21.0% 38.8% nan 55.6% 37.0% 17.9% 10.3% 7.0% 6.2% 3.7% nan 31.9% 30.4% 24.4% 25.6% 17.9% 14.1% 10.5%

nan nan
50.4% 71.9% 57.6% 58.1% 72.3% 38.9% 42.0% 64.0% 16.7 11.8 nan 75.5% 83.8% 53.6% 60.1% 30.9% 37.4% 45.8% 61.6% 63.9% 61.7% 23.9% 36.7% nan 96.8% 96.5% 93.6% 89.5% 85.6% 47.5% 13.0% nan 33.7% 32.1% 34.0% 29.1% 31.6% 19.9% 12.6%
49.2% 72.4% 58.4% 58.4% 71.4% 39.0% 41.8% 65.0% 16.6 11.9 nan 75.5% 82.7% 52.7% 58.4% 31.4% 36.9% 46.0% 59.2% 65.6% 62.1% 26.7% 39.7% nan 99.3% 99.5% 98.5% 98.4% 93.3% 57.8% 9.6% nan 32.6% 32.0% 33.0% 30.8% 29.6% 26.8% 27.0%
51.8% 72.9% 60.2% 59.2% 72.6% 40.9% 42.1% 63.7% 16.2 10.4 nan 71.3% 84.1% 52.3% 56.5% 32.1% 39.1% 46.4% 59.3% 63.9% 62.5% 24.2% 37.4% nan 98.1% 97.7% 95.6% 93.3% 89.9% 45.0% 9.0% nan 34.8% 34.4% 34.5% 31.7% 32.6% 23.4% 6.2%
52.0% 72.7% 59.8% 61.8% 73.7% 41.4% 42.3% 65.0% 16.0 10.3 nan 76.2% 82.3% 55.2% 57.0% 32.0% 37.7% 45.6% 57.9% 63.6% 62.1% 23.5% 38.6% nan 99.6% 99.4% 99.0% 99.1% 97.0% 68.8% 31.6% nan 33.1% 34.6% 33.1% 28.4% 30.7% 28.7% 25.5%
48.8% 71.9% 57.9% 58.4% 71.8% 38.7% 41.6% 63.5% 17.1 12.2 nan 69.8% 79.1% 48.1% 55.3% 29.7% 34.3% 47.0% 58.8% 64.0% 62.6% 22.4% 37.1% nan 97.0% 94.9% 81.8% 79.2% 42.9% 6.3% 0.4% nan 30.6% 29.0% 27.3% 23.7% 22.0% 7.9% 0.1%
49.9% 73.1% 59.7% 61.3% 74.0% 40.5% 42.9% 63.0% 16.1 11.2 nan 77.2% 83.0% 51.4% 61.3% 29.8% 36.7% 45.8% 59.4% 62.9% 62.0% 21.7% 40.0% nan 97.0% 95.5% 86.9% 83.5% 63.3% 1.0% 0.7% nan 31.4% 32.0% 29.8% 24.0% 22.2% 1.0% 0.5%
49.4% 72.9% 59.2% 60.5% 73.5% 40.9% 42.6% 62.9% 16.7 11.9 nan 70.7% 81.2% 52.1% 56.2% 29.3% 32.1% 47.0% 58.4% 62.9% 63.0% 22.8% 34.5% nan 98.4% 97.6% 95.3% 91.1% 57.9% 2.8% 0.3% nan 29.4% 28.2% 28.4% 24.9% 24.4% 2.7% 0.1%

nan nan
49.9% 73.9% 58.7% 58.4% 72.1% 38.1% 42.6% 64.2% 16.6 11.3 nan 76.4% 83.7% 52.5% 57.4% 33.1% 37.5% 45.4% 58.4% 65.6% 60.6% 24.5% 38.0% nan 99.6% 99.1% 99.1% 98.6% 96.9% 85.5% 2.1% nan 34.4% 34.7% 34.2% 29.8% 35.7% 31.4% 12.8%
47.2% 71.9% 55.2% 57.2% 69.7% 38.6% 41.9% 62.8% 18.1 13.5 nan 76.3% 84.5% 53.8% 55.2% 28.4% 32.6% 43.7% 55.5% 62.5% 57.9% 23.3% 37.8% nan 99.2% 99.0% 98.4% 97.6% 96.8% 75.6% 6.4% nan 33.8% 33.6% 31.4% 31.3% 33.9% 23.1% 1.2%
51.1% 72.5% 59.4% 60.3% 73.2% 40.4% 42.5% 63.9% 16.3 10.9 nan 76.6% 83.0% 57.7% 60.6% 31.2% 37.5% 45.1% 61.4% 64.2% 63.9% 23.3% 39.4% nan 98.8% 98.0% 97.6% 96.6% 93.4% 81.1% 17.8% nan 34.4% 33.0% 33.0% 28.7% 32.0% 28.7% 9.8%
50.8% 73.2% 59.9% 60.5% 72.4% 41.5% 42.3% 64.6% 16.0 11.0 nan 77.1% 84.7% 54.1% 57.1% 31.9% 37.3% 45.3% 56.4% 66.4% 63.9% 24.4% 38.7% nan 99.1% 99.1% 97.9% 97.0% 94.5% 69.8% 29.4% nan 33.1% 34.3% 32.1% 28.9% 29.5% 28.7% 21.7%
50.7% 73.0% 59.6% 60.2% 74.0% 41.5% 42.5% 65.1% 16.2 11.2 nan 79.2% 82.7% 52.5% 59.2% 30.7% 36.3% 43.0% 54.8% 65.9% 63.5% 23.3% 38.8% nan 99.7% 99.1% 95.7% 89.2% 68.4% 4.9% 0.7% nan 31.1% 32.2% 31.7% 26.7% 28.3% 6.8% 0.7%
49.2% 73.2% 59.0% 58.8% 72.3% 39.1% 43.4% 64.6% 16.8 11.8 nan 68.8% 81.5% 52.0% 56.8% 29.4% 31.2% 43.4% 57.2% 64.0% 61.8% 22.1% 36.3% nan 99.4% 98.6% 96.5% 90.9% 51.1% 5.6% 0.2% nan 32.0% 31.1% 28.5% 26.0% 26.0% 5.4% 0.2%
48.7% 72.9% 58.8% 59.0% 71.4% 37.9% 42.8% 63.6% 16.6 12.7 nan 75.4% 82.1% 50.4% 56.9% 29.2% 34.0% 41.9% 56.1% 65.6% 62.8% 25.0% 37.6% nan 98.4% 97.8% 96.4% 91.3% 64.7% 1.6% 0.7% nan 30.8% 30.5% 28.6% 26.0% 25.5% 3.2% 0.3%
50.0% 73.8% 59.0% 59.7% 71.8% 38.7% 42.3% 62.5% 16.8 11.6 nan 70.8% 77.8% 45.3% 52.3% 28.5% 33.9% 44.1% 56.3% 62.1% 61.9% 20.9% 34.5% nan 98.0% 93.4% 87.0% 81.6% 49.0% 3.3% 0.4% nan 31.2% 31.2% 33.0% 27.2% 29.3% 3.9% 0.4%
47.4% 73.4% 58.6% 59.6% 71.7% 40.4% 42.9% 63.2% 16.6 13.3 nan 73.1% 73.4% 48.9% 54.7% 28.1% 31.5% 44.8% 55.3% 63.4% 61.3% 23.3% 38.2% nan 97.8% 93.4% 87.6% 80.9% 46.4% 7.5% 0.3% nan 30.2% 30.6% 30.7% 25.5% 27.4% 11.8% 0.0%
48.9% 72.5% 59.1% 59.0% 71.4% 41.1% 42.9% 62.3% 16.9 12.6 nan 74.7% 79.7% 49.2% 54.7% 30.3% 33.7% 47.9% 58.2% 65.0% 61.8% 24.2% 37.4% nan 99.0% 97.4% 92.3% 84.7% 58.4% 5.4% 0.9% nan 31.2% 31.2% 30.5% 30.4% 27.7% 8.1% 0.5%
50.1% 72.7% 58.9% 60.5% 72.2% 41.0% 42.3% 63.5% 16.8 12.0 nan 74.2% 76.8% 53.6% 52.6% 31.0% 34.1% 43.6% 57.4% 64.5% 63.6% 23.1% 37.3% nan 97.3% 96.9% 92.8% 88.7% 56.1% 2.7% 0.6% nan 30.8% 31.1% 28.9% 27.0% 25.9% 4.0% 0.2%
48.5% 72.7% 58.8% 60.7% 71.7% 39.8% 42.4% 63.4% 16.7 12.3 nan 71.3% 82.7% 46.2% 56.5% 29.0% 33.0% 44.8% 55.1% 63.1% 62.5% 24.5% 34.9% nan 98.0% 96.2% 91.2% 83.2% 59.8% 7.0% 0.8% nan 32.5% 31.1% 28.7% 22.4% 24.7% 6.1% 0.3%
48.1% 73.0% 59.3% 59.4% 72.6% 41.1% 42.1% 63.5% 16.7 13.1 nan 71.7% 78.3% 49.7% 60.5% 29.2% 34.3% 44.0% 55.3% 64.3% 61.0% 24.3% 36.6% nan 98.9% 97.6% 90.5% 86.3% 65.4% 3.3% 0.7% nan 28.9% 29.5% 29.3% 26.3% 26.2% 3.3% 0.4%

FineWeb-Edu | 100B token pretrain | 1.3B models

Figure 24: This is identical to Figure 17 but additionally includes GPT2(RoPE) models—identical to Llama(RoPE)
but using standard MLPs—and GPT2(RoPE,R2), which replaces silu with ReLU2 activation. Key con-
clusions remain unchanged: reducing RoPE improves length generalization, and many architectural
differences (e.g., standard vs. gated MLP, SiLU vs. ReLU2) are buried in noise.

qa1-0k
qa1-1k

qa1-2k
qa1-4k

qa2-0k
qa2-1k

qa2-2k
qa2-4k

qa3-0k
qa3-1k

qa3-2k
qa3-4k

qa4-0k
qa4-1k

qa4-2k
qa4-4k

qa5-0k
qa5-1k

qa5-2k
qa5-4k

GLA - Canon-ABCD(res) - seed 20
GLA - conv1d - seed 20
GLA - original(noconv1d) - seed 20
GatedDeltaNet - original(conv1d) - seed 20
Mamba2 - Canon-AB(no-res) - seed 20
Mamba2 - Canon-AB(res) - seed 20
Mamba2 - noconv1d - seed 20
Mamba2 - original(conv1d) - seed 20
Mamba2(mlp) - Canon-ABCD(res) - seed 20
Mamba2(mlp) - original(conv1d) - seed 20

GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - original - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - original - seed 20

Llama(NoPE) - Canon-ABCD(res) - seed 20
Llama(NoPE) - original - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20
Llama(RoPE) - original - seed 21
Llama(RoPE) - original - seed 22
Llama(RoPE) - original - seed 23
Llama(RoPE) - original - seed 24
Llama(RoPE) - original - seed 25
Llama(RoPE) - original - seed 26
Llama(RoPE) - original - seed 27

47.0% 41.8% 29.7% 19.0% nan 33.2% 22.8% 17.3% 12.4% nan 31.7% 29.5% 22.2% 7.0% nan 58.6% 36.6% 27.8% 19.7% nan 57.4% 51.9% 45.8% 29.0%
46.4% 33.7% 28.5% 19.3% nan 31.1% 22.1% 16.1% 12.5% nan 25.4% 23.4% 18.9% 13.2% nan 57.4% 33.1% 29.0% 20.7% nan 51.4% 52.3% 50.1% 46.9%
44.3% 37.4% 28.1% 18.7% nan 29.6% 21.4% 19.2% 18.8% nan 25.2% 23.1% 14.4% 6.3% nan 57.9% 27.1% 24.8% 18.2% nan 49.4% 49.8% 48.0% 44.8%
49.2% 39.9% 31.8% 29.3% nan 34.5% 27.5% 20.2% 16.1% nan 25.6% 25.3% 24.5% 10.0% nan 54.2% 44.1% 32.4% 20.4% nan 55.9% 58.3% 53.4% 39.0%
47.9% 42.2% 29.7% 25.4% nan 36.7% 21.9% 19.9% 14.4% nan 27.9% 27.0% 14.1% 10.2% nan 56.7% 35.3% 28.8% 20.6% nan 58.7% 53.9% 48.8% 35.1%
50.3% 42.8% 31.2% 25.3% nan 34.9% 23.9% 19.0% 14.6% nan 31.4% 22.3% 10.2% 10.3% nan 51.8% 34.3% 27.1% 17.9% nan 62.5% 53.9% 48.1% 35.0%
44.6% 40.3% 23.2% 19.4% nan 25.6% 21.0% 16.7% 14.8% nan 21.6% 21.6% 6.3% 10.3% nan 48.0% 27.2% 22.3% 19.0% nan 43.8% 49.5% 42.0% 33.9%
47.7% 39.7% 28.6% 23.0% nan 35.0% 22.4% 18.4% 13.6% nan 23.5% 21.8% 18.0% 12.8% nan 48.5% 35.9% 28.5% 18.2% nan 57.5% 55.5% 53.9% 39.5%
42.5% 35.2% 31.2% 20.8% nan 29.3% 24.7% 19.5% 18.0% nan 25.2% 19.3% 11.1% 9.0% nan 48.1% 33.2% 24.4% 15.7% nan 53.7% 53.3% 47.1% 38.3%
49.1% 36.9% 27.7% 19.3% nan 33.1% 25.4% 16.7% 12.1% nan 24.9% 16.0% 14.7% 11.8% nan 55.6% 31.4% 25.5% 18.1% nan 53.9% 55.0% 52.7% 37.1%

nan nan
55.4% 63.5% 58.2% 46.4% nan 31.0% 29.4% 27.7% 26.0% nan 29.3% 27.7% 25.1% 23.0% nan 54.1% 40.0% 36.9% 30.2% nan 69.0% 68.8% 66.4% 61.9%
59.2% 72.4% 63.6% 47.7% nan 37.0% 30.2% 28.8% 26.4% nan 30.3% 30.0% 27.4% 22.2% nan 57.9% 40.8% 34.7% 31.8% nan 67.3% 71.2% 68.5% 60.8%
59.2% 71.1% 66.7% 51.2% nan 42.7% 34.2% 29.4% 28.8% nan 28.8% 28.5% 28.7% 23.7% nan 54.3% 43.2% 36.8% 31.9% nan 58.6% 67.2% 67.6% 61.4%
52.4% 64.7% 58.8% 46.4% nan 38.4% 33.8% 31.9% 24.6% nan 29.4% 25.4% 28.2% 23.1% nan 52.6% 44.4% 42.8% 39.8% nan 67.4% 70.1% 66.8% 63.2%
53.8% 62.6% 49.9% 33.9% nan 35.2% 31.0% 23.7% 18.8% nan 29.5% 29.1% 24.0% 13.6% nan 61.7% 37.3% 30.2% 21.1% nan 63.6% 61.9% 55.1% 40.3%
50.2% 62.4% 42.9% 30.3% nan 30.9% 28.5% 22.2% 16.8% nan 33.5% 32.0% 27.3% 6.4% nan 56.9% 46.4% 34.8% 22.1% nan 66.3% 69.1% 61.5% 28.7%
50.9% 61.6% 50.5% 33.9% nan 34.4% 31.4% 27.4% 20.3% nan 26.3% 28.5% 25.9% 12.3% nan 60.9% 36.9% 25.8% 27.4% nan 59.8% 64.8% 61.6% 42.6%

nan nan
60.9% 63.6% 56.1% 48.9% nan 36.9% 33.3% 27.8% 26.1% nan 24.0% 24.0% 24.5% 22.4% nan 54.0% 40.0% 35.0% 33.5% nan 53.1% 57.4% 56.2% 52.9%
52.7% 61.6% 58.9% 48.2% nan 32.4% 30.7% 26.8% 21.0% nan 26.8% 25.2% 23.9% 20.1% nan 60.1% 39.9% 32.1% 29.0% nan 60.1% 64.8% 62.2% 60.2%
62.1% 71.5% 65.0% 47.3% nan 36.5% 29.5% 25.6% 24.5% nan 29.9% 29.5% 27.4% 24.6% nan 58.7% 42.2% 34.1% 36.5% nan 63.1% 65.2% 63.9% 56.9%
60.0% 70.1% 63.1% 55.8% nan 39.7% 33.3% 31.1% 29.4% nan 27.7% 29.1% 24.8% 27.9% nan 55.8% 42.6% 37.4% 33.3% nan 67.6% 63.3% 56.7% 60.7%
59.4% 70.9% 57.8% 35.9% nan 38.2% 30.1% 25.6% 20.6% nan 31.7% 31.6% 27.2% 10.8% nan 59.4% 34.8% 31.9% 23.7% nan 68.4% 64.9% 63.6% 52.1%
55.1% 63.5% 55.9% 31.6% nan 37.9% 27.1% 23.9% 20.8% nan 34.5% 30.3% 28.1% 12.8% nan 60.9% 35.0% 31.0% 25.7% nan 69.7% 64.0% 60.6% 54.0%
52.2% 59.0% 43.2% 32.3% nan 33.5% 28.9% 23.2% 18.4% nan 35.1% 32.5% 22.0% 10.1% nan 58.9% 44.6% 34.3% 26.9% nan 63.6% 71.0% 63.6% 41.7%
59.9% 66.7% 53.6% 33.8% nan 35.9% 30.7% 25.5% 18.7% nan 29.8% 29.1% 19.1% 8.8% nan 57.7% 46.1% 35.7% 24.6% nan 73.8% 70.4% 65.7% 46.8%
50.9% 54.4% 43.0% 37.7% nan 30.3% 27.1% 23.1% 16.4% nan 25.8% 30.7% 24.5% 10.8% nan 54.0% 39.5% 31.1% 21.6% nan 57.4% 62.8% 57.6% 47.7%
58.7% 64.7% 51.2% 36.5% nan 37.5% 29.8% 23.9% 14.7% nan 32.9% 30.2% 24.6% 11.4% nan 57.4% 41.6% 29.4% 22.0% nan 70.2% 68.8% 63.1% 47.6%
56.5% 65.1% 56.0% 28.6% nan 36.7% 32.9% 27.5% 19.1% nan 30.9% 29.7% 25.3% 15.4% nan 54.6% 41.5% 32.4% 26.1% nan 68.3% 73.5% 68.7% 52.9%
57.0% 61.8% 50.8% 33.0% nan 38.9% 31.1% 25.1% 17.0% nan 34.3% 32.8% 26.5% 15.7% nan 59.9% 44.0% 39.6% 21.3% nan 62.6% 67.6% 61.6% 53.4%
58.2% 58.5% 47.2% 37.0% nan 32.7% 25.3% 22.2% 22.0% nan 27.1% 27.6% 26.3% 9.8% nan 56.8% 38.3% 39.0% 27.5% nan 63.8% 66.7% 56.4% 52.6%

SlimPajama | 100B token pretrain | 1.3B models

qa1-0k
qa1-1k

qa1-2k
qa1-4k

qa2-0k
qa2-1k

qa2-2k
qa2-4k

qa3-0k
qa3-1k

qa3-2k
qa3-4k

qa4-0k
qa4-1k

qa4-2k
qa4-4k

qa5-0k
qa5-1k

qa5-2k
qa5-4k

GLA - Canon-ABCD(res) - seed 20
GLA - conv1d - seed 20
GLA - original(noconv1d) - seed 20
GatedDeltaNet - original(conv1d) - seed 20
Mamba2 - Canon-AB(no-res) - seed 20
Mamba2 - Canon-AB(res) - seed 20
Mamba2 - noconv1d - seed 20
Mamba2 - original(conv1d) - seed 20
Mamba2(mlp) - Canon-ABCD(res) - seed 20
Mamba2(mlp) - original(conv1d) - seed 20

GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE) - original - seed 20
GPT2(RoPE,R2) - Canon-ABCD(res) - seed 20
GPT2(RoPE,R2) - original - seed 20

Llama(NoPE) - Canon-ABCD(res) - seed 20
Llama(NoPE) - original - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20
Llama(RoPE) - original - seed 21
Llama(RoPE) - original - seed 22
Llama(RoPE) - original - seed 23
Llama(RoPE) - original - seed 24
Llama(RoPE) - original - seed 25
Llama(RoPE) - original - seed 26
Llama(RoPE) - original - seed 27

39.5% 36.9% 30.7% 23.3% nan 25.4% 18.5% 18.7% 16.4% nan 24.1% 16.1% 13.2% 14.5% nan 37.7% 33.9% 31.4% 17.6% nan 45.0% 46.3% 40.8% 26.1%
45.3% 34.8% 32.3% 26.1% nan 24.3% 20.4% 20.1% 15.9% nan 19.1% 14.2% 10.8% 13.4% nan 47.5% 34.9% 31.3% 24.1% nan 43.9% 45.8% 43.3% 34.5%
46.0% 37.2% 29.3% 20.8% nan 27.3% 21.3% 20.5% 16.6% nan 19.5% 12.3% 16.6% 16.2% nan 51.6% 34.6% 28.5% 16.0% nan 54.7% 49.7% 40.7% 27.0%
43.1% 41.3% 34.8% 27.9% nan 26.6% 23.7% 19.8% 17.2% nan 25.9% 13.0% 11.9% 15.6% nan 48.5% 37.7% 32.1% 25.0% nan 45.1% 47.2% 46.2% 38.6%
42.6% 41.3% 34.6% 19.9% nan 29.3% 22.2% 17.8% 12.2% nan 24.5% 15.0% 13.1% 12.9% nan 48.3% 36.8% 28.5% 15.3% nan 58.7% 54.8% 38.9% 22.3%
42.1% 35.3% 29.9% 23.6% nan 29.5% 20.2% 19.1% 15.5% nan 25.3% 14.2% 14.6% 16.7% nan 47.9% 33.9% 28.8% 20.3% nan 57.3% 52.5% 46.5% 33.1%
34.4% 33.9% 29.5% 21.9% nan 20.7% 21.2% 19.1% 14.5% nan 20.4% 8.5% 11.9% 12.2% nan 49.4% 37.4% 25.8% 11.3% nan 48.8% 51.4% 43.9% 26.0%
41.3% 40.6% 33.6% 26.8% nan 31.9% 25.8% 19.5% 13.3% nan 22.4% 13.8% 17.6% 17.3% nan 46.5% 34.0% 27.0% 17.5% nan 53.4% 52.5% 44.7% 28.0%
35.4% 32.9% 30.3% 25.0% nan 20.6% 20.3% 19.8% 17.8% nan 19.2% 9.2% 15.4% 16.6% nan 46.8% 36.0% 31.3% 16.9% nan 52.2% 53.2% 37.4% 23.6%
39.7% 37.9% 31.2% 24.8% nan 23.1% 19.1% 16.9% 13.0% nan 20.2% 16.4% 13.7% 16.0% nan 52.3% 34.6% 28.4% 19.1% nan 56.4% 54.2% 47.3% 30.9%

nan nan
50.4% 55.9% 45.2% 35.3% nan 29.4% 24.7% 23.0% 21.2% nan 28.6% 28.2% 25.3% 20.4% nan 53.3% 35.3% 30.6% 28.5% nan 60.9% 58.2% 52.2% 52.4%
52.4% 62.6% 45.9% 36.9% nan 31.6% 23.6% 22.0% 21.1% nan 27.5% 24.4% 23.9% 21.8% nan 56.4% 38.2% 34.3% 36.4% nan 57.2% 57.3% 47.8% 46.0%
56.1% 65.1% 53.2% 44.7% nan 37.6% 32.0% 31.2% 26.9% nan 27.8% 32.4% 26.9% 26.2% nan 48.1% 32.4% 31.7% 30.3% nan 61.2% 55.2% 54.3% 50.6%
50.8% 62.6% 56.3% 44.2% nan 34.6% 32.3% 25.5% 26.2% nan 28.1% 29.6% 27.3% 22.2% nan 54.8% 40.6% 30.5% 30.2% nan 60.7% 66.7% 65.0% 53.9%
48.2% 54.1% 40.9% 37.2% nan 36.4% 26.6% 18.2% 14.0% nan 26.8% 26.8% 22.0% 13.0% nan 53.0% 36.9% 32.0% 19.6% nan 55.5% 55.1% 47.6% 45.5%
46.8% 52.1% 41.0% 22.5% nan 31.5% 25.4% 20.5% 10.5% nan 26.6% 23.9% 14.6% 11.6% nan 54.7% 36.3% 34.4% 19.5% nan 55.5% 69.1% 59.7% 29.8%
54.2% 54.6% 33.7% 34.9% nan 32.4% 26.9% 21.9% 17.6% nan 27.6% 28.1% 4.3% 16.8% nan 55.5% 36.3% 30.9% 21.4% nan 59.5% 61.9% 55.6% 35.8%

nan nan
55.5% 64.4% 61.5% 53.3% nan 34.1% 32.5% 27.0% 21.5% nan 25.0% 27.5% 24.2% 18.7% nan 50.2% 39.5% 32.8% 30.6% nan 56.2% 64.1% 61.0% 57.1%
48.7% 59.5% 52.3% 41.6% nan 31.2% 27.8% 25.3% 21.2% nan 24.7% 24.0% 24.7% 21.5% nan 52.6% 34.7% 32.1% 31.2% nan 50.7% 56.4% 54.5% 55.0%
54.4% 56.8% 49.9% 42.6% nan 35.7% 29.6% 27.6% 23.2% nan 30.0% 29.1% 26.5% 22.1% nan 46.4% 38.0% 33.6% 31.4% nan 72.0% 65.7% 57.6% 59.4%
60.3% 60.6% 52.9% 45.6% nan 32.1% 26.1% 24.3% 21.5% nan 21.2% 24.0% 22.3% 19.6% nan 45.3% 40.5% 33.1% 40.2% nan 57.7% 56.9% 52.5% 56.2%
53.6% 59.7% 45.1% 37.5% nan 35.4% 25.1% 22.0% 17.3% nan 27.0% 28.0% 10.1% 7.9% nan 57.1% 37.1% 29.2% 24.8% nan 62.0% 65.5% 56.1% 44.5%
47.5% 54.9% 40.9% 35.2% nan 28.5% 26.2% 23.3% 14.8% nan 27.7% 24.6% 18.4% 11.3% nan 54.4% 39.7% 31.9% 22.8% nan 55.0% 57.8% 56.4% 43.3%
47.8% 51.2% 33.6% 38.3% nan 30.5% 25.4% 19.2% 16.2% nan 25.6% 25.6% 18.8% 14.1% nan 51.6% 34.5% 27.9% 25.2% nan 60.2% 66.9% 54.1% 43.5%
47.9% 44.7% 34.0% 35.5% nan 30.8% 24.8% 18.9% 13.4% nan 22.6% 28.0% 6.5% 12.2% nan 53.6% 37.5% 30.6% 18.6% nan 60.1% 55.7% 48.2% 38.0%
53.4% 50.5% 41.3% 40.1% nan 35.5% 28.0% 21.4% 15.8% nan 33.9% 28.0% 12.1% 13.0% nan 57.2% 37.8% 29.6% 23.1% nan 60.7% 64.7% 57.4% 36.2%
45.7% 61.5% 38.8% 33.1% nan 34.0% 31.5% 22.8% 12.4% nan 27.9% 29.5% 4.8% 13.0% nan 56.8% 41.9% 31.5% 19.3% nan 59.8% 61.2% 49.8% 37.5%
47.0% 56.5% 43.5% 34.8% nan 32.0% 22.0% 18.1% 15.3% nan 23.5% 22.2% 14.9% 11.6% nan 57.8% 33.2% 26.8% 21.9% nan 55.0% 62.1% 54.7% 43.9%
53.3% 52.7% 38.8% 31.9% nan 35.0% 28.3% 17.6% 14.7% nan 33.0% 31.8% 13.3% 12.3% nan 50.1% 41.3% 30.6% 22.7% nan 62.0% 60.5% 53.7% 39.4%
50.7% 50.8% 39.4% 32.5% nan 33.0% 28.6% 20.4% 13.9% nan 27.7% 26.9% 2.4% 8.7% nan 52.2% 40.5% 28.2% 19.2% nan 64.2% 63.1% 55.3% 50.3%

FineWeb-Edu | 100B token pretrain | 1.3B models

qa1-0k
qa1-1k

qa1-2k
qa1-4k

qa2-0k
qa2-1k

qa2-2k
qa2-4k

qa3-0k
qa3-1k

qa3-2k
qa3-4k

qa4-0k
qa4-1k

qa4-2k
qa4-4k

qa5-0k
qa5-1k

qa5-2k
qa5-4k

Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - Canon-ABCD(res) - seed 20
Llama(RoPE) - original - seed 20

62.9% 72.3% 69.2% 55.1% nan 41.2% 35.7% 30.4% 24.6% nan 34.6% 31.6% 30.1% 16.6% nan 62.6% 50.9% 46.1% 39.0% nan 72.8% 70.1% 68.4% 57.1%
65.1% 68.9% 65.4% 51.2% nan 42.2% 35.9% 35.1% 29.2% nan 34.0% 35.4% 31.4% 18.2% nan 54.6% 49.7% 46.1% 42.4% nan 72.1% 74.1% 66.6% 52.8%
59.7% 73.3% 63.7% 25.0% nan 40.2% 33.0% 28.9% 21.2% nan 31.7% 30.4% 29.2% 4.8% nan 51.1% 42.4% 45.1% 32.1% nan 76.1% 66.9% 65.1% 45.4%

SlimPajama | 300B token pretrain | 1.7B models

Figure 25: Results on the Babilong dataset evaluating multi-hop reasoning across varied junk context lengths. Most
architectural comparisons are statistically insignificant. Key findings include:
1. Linear models consistently underperform Transformers, even in short contexts without junk.
2. Models with reduced RoPE (NoPE, RoPE ˇ “) achieve notable improvements in long-context accuracy.

42

D.2 Even More Ablation Studies

In this section, we present additional pretraining experiments, including full-scale ablation studies,
KL-divergence evaluations for Mano tasks, and other analyses. These results were omitted from
the main body of the paper to maintain focus and clarity; however, they may be of interest to
certain readers (or at least to ourselves!) who seek deeper insights into the experimental setup and
findings. For the sake of completeness, these supplementary results are provided here.

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/34% 1/50% 1/4% 0/1%
0/27% 0/0% 0/12% 0/0%
0/2% 0/56% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

51/99% 51/97% 13/86% 25/43%
11/98% 20/91% 2/61% 0/40%
0/21% 55/92% 0/77% 0/13%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

98/100% 95/100% 97/99% 94/100%
52/98% 85/100% 5/99% 51/95%
2/21% 44/97% 0/91% 89/99%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

93/98% 96/99% 85/100% 92/100%
50/83% 69/100% 86/99% 75/94%
0/73% 19/98% 30/98% 51/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

100/100% 92/100% 57/99% 96/100%
68/98% 32/97% 90/99% 98/100%
0/85% 40/96% 93/95% 68/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

96/100% 87/99% 93/97% 59/81%
19/100% 65/97% 12/88% 89/99%

6/92% 78/99% 0/99% 3/86%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

97/100% 92/100% 73/89% 94/100%
57/97% 54/93% 92/99% 99/99%
76/99% 53/99% 16/66% 97/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 2/1% 1/1% 30/99%
1/1% 1/90% 1/3% 21/96%
1/2% 1/92% 1/3% 1/50%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/76% 43/89% 2/86% 98/100%
3/88% 35/96% 24/95% 96/100%
1/67% 20/91% 1/53% 89/99%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

63/99% 89/100% 98/100% 99/100%
34/86% 75/100% 93/99% 99/100%
30/95% 90/99% 99/100% 93/99%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

14/97% 83/99% 86/100% 99/100%
1/76% 96/100% 59/99% 96/100%
1/3% 85/99% 1/23% 93/99%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

91/99% 86/98% 52/99% 82/98%
89/99% 54/94% 15/92% 99/100%
73/99% 94/100% 9/85% 96/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

97/100% 96/100% 96/100% 99/100%
90/100% 97/100% 76/99% 99/100%
79/98% 97/100% 96/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

91/99% 97/100% 98/100% 99/100%
98/100% 98/100% 99/100% 98/100%
71/98% 90/100% 94/99% 96/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

42.3% 84.1% 86.7% 85.9%
26.1% 57.8% 50.7% 57.2%
15.3% 31.8% 11.0% 36.2%

Task Brevo1
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

71.7% 85.1% 80.4% 91.3%
53.6% 72.5% 58.8% 76.8%
23.4% 42.5% 37.2% 48.6%

Task Brevo1
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

78.5% 90.7% 80.9% 93.7%
56.0% 68.1% 64.5% 72.5%
25.5% 45.8% 33.4% 55.4%

Task Brevo1
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

85.3% 90.6% 86.6% 92.4%
62.7% 78.6% 68.4% 87.8%
38.2% 54.0% 46.0% 49.9%

Task Brevo1
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

76.8% 93.1% 79.3% 92.3%
44.0% 69.9% 49.6% 67.6%
27.0% 35.6% 34.3% 52.6%

Task Brevo1
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.6% 88.7% 88.3% 91.3%
51.3% 72.4% 69.9% 75.7%
24.8% 49.1% 41.2% 58.8%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

74.1% 91.2% 84.0% 94.6%
49.5% 80.4% 58.2% 87.0%
33.0% 75.1% 42.5% 77.8%

Task Brevo2
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

82.9% 94.3% 91.5% 96.5%
65.3% 86.4% 79.3% 91.8%
39.2% 77.5% 66.2% 87.2%

Task Brevo2
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

85.7% 94.8% 89.0% 95.9%
62.6% 82.7% 77.1% 92.2%
38.1% 74.5% 55.0% 84.5%

Task Brevo2
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

86.4% 94.3% 92.1% 97.0%
71.7% 88.4% 83.2% 92.6%
48.5% 78.3% 67.0% 88.7%

Task Brevo2
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

85.1% 92.7% 89.2% 95.7%
66.9% 83.9% 74.0% 89.8%
46.8% 74.3% 59.1% 82.5%

Task Brevo2
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.5% 94.5% 92.3% 95.4%
66.0% 85.3% 79.3% 90.5%
44.6% 75.5% 68.5% 87.8%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.4% 75.5% 84.5% 85.2%
55.6% 53.8% 52.5% 46.5%
26.3% 19.7% 20.9% 41.6%

Task Mano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

95.2% 86.6% 97.0% 97.5%
47.1% 44.0% 91.0% 90.3%
43.2% 59.4% 93.1% 79.4%

Task Mano
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 94.5% 95.8%
76.5% 87.6% 91.6% 88.6%
49.7% 53.0% 64.6% 78.3%

Task Mano
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

76.7% 84.2% 97.7% 98.6%
81.9% 86.1% 83.6% 87.7%
41.2% 53.9% 81.2% 79.8%

Task Mano
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

95.6% 98.6% 98.9% 97.6%
95.8% 89.7% 96.8% 98.0%
78.5% 42.4% 76.9% 83.2%

Task Mano
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.8% 97.8% 94.1% 97.7%
86.9% 97.7% 97.1% 97.5%
59.5% 59.9% 95.0% 86.4%

Task Mano
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

95.1% 99.3% 99.3% 99.5%
66.0% 94.6% 97.1% 98.8%
63.7% 82.8% 91.4% 83.0%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 96.3% 93.4% 97.6%
74.1% 91.4% 82.3% 90.3%
64.0% 75.1% 60.0% 79.1%

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

94.1% 97.7% 95.7% 97.5%
86.8% 93.7% 87.9% 94.2%
65.9% 84.0% 78.0% 89.8%

Task Lano
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.7% 97.5% 97.5% 98.2%
87.8% 93.1% 88.9% 95.1%
73.5% 86.3% 80.6% 86.3%

Task Lano
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.2% 97.9% 96.4% 97.9%
82.5% 93.2% 88.3% 93.3%
69.3% 82.6% 77.8% 85.2%

Task Lano
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

97.1% 98.1% 97.0% 98.5%
86.0% 92.1% 90.2% 93.4%
73.4% 84.6% 77.5% 84.7%

Task Lano
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.3% 97.8% 97.1% 97.7%
86.4% 92.0% 91.0% 94.9%
79.1% 85.7% 82.1% 89.8%

Task Lano
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.6% 98.0% 97.2% 98.3%
88.2% 92.0% 88.6% 94.3%
75.2% 87.1% 83.0% 86.7%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00095 0.00050 0.00073 0.00038
0.00135 0.00056 0.00095 0.00057
0.00232 0.00156 0.00235 0.00131

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00069 0.00038 0.00056 0.00039
0.00082 0.00046 0.00071 0.00042
0.00214 0.00109 0.00140 0.00073

Task Lano
Llama(RoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00046 0.00039 0.00039 0.00032
0.00073 0.00046 0.00063 0.00039
0.00167 0.00095 0.00122 0.00094

Task Lano
Llama(RoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00052 0.00036 0.00052 0.00035
0.00096 0.00047 0.00068 0.00044
0.00186 0.00115 0.00135 0.00098

Task Lano
Llama(RoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00044 0.00034 0.00040 0.00030
0.00079 0.00051 0.00059 0.00043
0.00170 0.00101 0.00135 0.00101

Task Lano
Llama(RoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00056 0.00036 0.00043 0.00035
0.00077 0.00051 0.00055 0.00036
0.00134 0.00094 0.00117 0.00069

Task Lano
Llama(RoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00048 0.00034 0.00042 0.00028
0.00071 0.00052 0.00065 0.00040
0.00155 0.00090 0.00113 0.00091

Task Lano
Llama(RoPE) - Canon-ABCD(res)

Figure 26: Llama(RoPE) family: (from left to right) original, Canon-B, -AC, -BD, -ACD, -ABC, -ABCD.
This figure complements Figure 10 and gives more technical details.

43

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/34% 1/50% 1/4% 0/1%
0/27% 0/0% 0/12% 0/0%
0/2% 0/56% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

63/96% 93/100% 61/97% 98/100%
12/54% 42/100% 16/97% 98/100%
0/44% 32/95% 20/76% 48/98%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

97/100% 92/100% 73/89% 94/100%
57/97% 54/93% 92/99% 99/99%
76/99% 53/99% 16/66% 97/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

45/99% 95/99% 2/92% 99/100%
4/80% 97/100% 0/98% 84/100%
0/59% 75/100% 97/100% 99/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 97/100% 99/100% 100/100%
98/100% 92/99% 95/100% 95/100%
75/99% 97/100% 85/100% 90/100%

Task Depo1(K=8, k=8/4)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 2/1% 1/1% 30/99%
1/1% 1/90% 1/3% 21/96%
1/2% 1/92% 1/3% 1/50%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/91% 1/34% 1/50% 9/97%
1/1% 2/54% 2/62% 65/97%
1/18% 1/15% 54/93% 1/82%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

91/99% 97/100% 98/100% 99/100%
98/100% 98/100% 99/100% 98/100%
71/98% 90/100% 94/99% 96/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/77% 1/16% 1/29% 36/92%
1/33% 1/52% 5/85% 50/95%
1/56% 26/94% 37/97% 1/77%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 100/100% 97/100% 99/100%
97/100% 99/100% 96/100% 97/100%
85/100% 99/100% 98/100% 98/100%

Task Depo2(K=16, k=16/8)
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

45.6% 76.9% 79.8% 88.5%
32.6% 64.5% 44.5% 63.1%
8.0% 31.2% 17.7% 27.5%

Task Brevo1
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

42.2% 84.6% 75.2% 90.1%
32.8% 61.6% 32.9% 70.4%
5.3% 35.1% 17.6% 51.0%

Task Brevo1
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.6% 88.7% 88.3% 91.3%
51.3% 72.4% 69.9% 75.7%
24.8% 49.1% 41.2% 58.8%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

64.4% 88.5% 80.0% 92.2%
35.1% 70.0% 54.1% 84.8%
15.6% 47.2% 43.3% 68.8%

Task Brevo1
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

83.7% 93.8% 91.3% 96.5%
62.9% 84.5% 81.2% 90.7%
47.9% 82.2% 69.7% 84.5%

Task Brevo1
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

69.3% 89.8% 83.7% 96.0%
40.3% 79.5% 60.5% 88.0%
22.4% 68.2% 40.2% 81.4%

Task Brevo2
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

74.5% 87.1% 84.2% 91.0%
44.5% 71.8% 65.2% 81.8%
21.1% 60.2% 40.2% 65.6%

Task Brevo2
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.5% 94.5% 92.3% 95.4%
66.0% 85.3% 79.3% 90.5%
44.6% 75.5% 68.5% 87.8%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

75.0% 91.5% 82.9% 92.9%
59.0% 76.8% 67.6% 85.6%
40.2% 67.6% 44.0% 80.0%

Task Brevo2
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.1% 95.6% 92.2% 97.1%
75.4% 87.7% 80.1% 93.5%
55.1% 82.5% 69.3% 88.1%

Task Brevo2
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.4% 75.5% 84.5% 85.2%
55.6% 53.8% 52.5% 46.5%
26.3% 19.7% 20.9% 41.6%

Task Mano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

71.2% 70.7% 83.8% 85.9%
55.8% 87.8% 65.0% 79.4%
9.5% 13.7% 66.9% 27.4%

Task Mano
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

95.1% 99.3% 99.3% 99.5%
66.0% 94.6% 97.1% 98.8%
63.7% 82.8% 91.4% 83.0%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

92.3% 90.5% 93.2% 94.3%
48.8% 11.7% 72.2% 90.1%
14.5% 35.0% 55.6% 53.9%

Task Mano
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.2% 98.0% 99.2% 99.6%
89.8% 88.5% 98.2% 99.2%
83.7% 83.6% 88.8% 85.3%

Task Mano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.1% 96.3% 93.4% 97.6%
74.1% 91.4% 82.3% 90.3%
64.0% 75.1% 60.0% 79.1%

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

92.1% 96.0% 94.5% 95.7%
55.0% 69.3% 68.1% 80.3%
40.4% 50.5% 40.0% 53.0%

Task Lano
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

96.6% 98.0% 97.2% 98.3%
88.2% 92.0% 88.6% 94.3%
75.2% 87.1% 83.0% 86.7%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

89.1% 92.5% 90.7% 94.1%
53.2% 65.0% 52.1% 65.9%
28.9% 40.1% 34.3% 35.8%

Task Lano
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

95.2% 97.5% 96.0% 98.1%
81.4% 90.1% 85.9% 92.6%
66.0% 77.9% 76.1% 78.9%

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00095 0.00050 0.00073 0.00038
0.00135 0.00056 0.00095 0.00057
0.00232 0.00156 0.00235 0.00131

Task Lano
Llama(RoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00092 0.00050 0.00066 0.00056
0.00247 0.00160 0.00170 0.00108
0.00428 0.00326 0.00432 0.00312

Task Lano
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00048 0.00034 0.00042 0.00028
0.00071 0.00052 0.00065 0.00040
0.00155 0.00090 0.00113 0.00091

Task Lano
Llama(RoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00120 0.00091 0.00107 0.00070
0.00260 0.00187 0.00262 0.00177
0.00571 0.00439 0.00503 0.00456

Task Lano
Llama(RoPE) - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00067 0.00041 0.00053 0.00035
0.00104 0.00060 0.00080 0.00050
0.00217 0.00145 0.00156 0.00129

Task Lano
Llama(RoPE) - Canon-ABCD(res)

Figure 27: Llama(RoPE) family: (left to right) original, Canon-B(no-res), Canon-ABCD(res), ˇ “Canon-B(no-res),
ˇ “Canon-ABCD(res).
This figure complements Figure 10 and directly compares to Primer [57] (i.e., Canon-B(no-res)), showing
its inefficiency and highlighting: (1) Canon layers are not tied to Attention; (2) Canon(res) at multiple
points is safe and more effective.

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

53/95% 0/13% 74/98% 62/97%
25/93% 0/12% 26/74% 49/93%
0/23% 1/76% 16/71% 52/94%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

86/99% 97/100% 98/100% 98/100%
80/100% 95/100% 93/100% 93/99%
81/98% 81/98% 76/95% 89/99%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 94/100% 97/100% 99/99%
94/100% 98/100% 86/99% 88/99%
95/100% 91/99% 57/98% 95/97%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

95/100% 99/100% 96/100% 99/100%
82/98% 95/99% 95/100% 86/91%
87/98% 71/96% 87/100% 83/99%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

88/100% 99/100% 88/100% 99/100%
73/99% 93/100% 93/99% 99/100%
90/99% 97/99% 76/99% 93/99%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

99/100% 99/100% 99/100% 100/100%
96/99% 99/100% 99/100% 99/100%
99/100% 99/100% 98/100% 99/100%

Task Depo1(K=8, k=8/4)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 47/93% 2/15% 71/98%
1/1% 1/60% 1/1% 17/91%
1/2% 84/98% 1/48% 2/92%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

59/98% 98/100% 95/100% 90/100%
19/95% 87/99% 79/99% 96/100%
75/98% 91/99% 87/100% 90/99%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

8/91% 72/100% 13/96% 97/100%
2/75% 55/98% 40/96% 98/100%
28/97% 31/96% 6/87% 63/96%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/100% 95/100% 96/100% 99/100%
73/99% 97/100% 30/97% 99/100%
92/100% 97/100% 76/100% 95/100%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

90/100% 99/100% 91/100% 100/100%
75/99% 95/100% 87/99% 99/100%
65/99% 98/100% 93/100% 99/100%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

96/100% 85/99% 86/100% 99/100%
94/100% 86/99% 99/100% 99/100%
90/100% 98/100% 93/100% 96/100%

Task Depo2(K=16, k=16/8)
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.2% 0.0% 0.0% 0.4%
0.1% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.1%

Task Brevo1
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

15.6% 82.1% 14.5% 61.6%
12.6% 17.6% 3.3% 51.0%
1.0% 2.1% 1.3% 2.9%

Task Brevo1
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

69.2% 92.2% 85.1% 94.6%
43.7% 80.9% 60.9% 85.6%
33.7% 60.5% 43.8% 63.6%

Task Brevo1
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

76.3% 93.6% 83.2% 92.8%
35.2% 76.6% 66.6% 81.7%
14.7% 67.3% 44.9% 67.3%

Task Brevo1
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

80.2% 93.6% 89.3% 95.6%
60.4% 87.3% 70.5% 90.9%
46.3% 75.5% 54.3% 83.0%

Task Brevo1
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

78.8% 92.1% 88.3% 95.3%
57.2% 82.9% 72.9% 89.0%
27.2% 64.7% 37.7% 77.1%

Task Brevo1
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

84.8% 94.4% 91.1% 96.2%
63.9% 85.8% 75.5% 92.2%
42.0% 75.3% 58.2% 84.9%

Task Brevo1
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0%

Task Brevo2
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

62.0% 84.0% 75.2% 93.2%
21.9% 64.2% 46.8% 81.2%
7.0% 48.2% 25.2% 50.4%

Task Brevo2
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

76.9% 92.7% 86.3% 95.4%
49.5% 81.6% 63.3% 88.7%
30.3% 72.6% 48.4% 75.7%

Task Brevo2
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

77.5% 93.1% 83.5% 94.1%
53.2% 80.0% 64.6% 86.3%
33.9% 53.9% 31.4% 68.0%

Task Brevo2
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

82.9% 92.5% 86.0% 96.0%
63.5% 84.3% 68.6% 91.6%
36.1% 75.4% 54.2% 85.2%

Task Brevo2
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

80.5% 91.5% 87.2% 95.4%
57.9% 78.8% 68.0% 88.8%
37.1% 66.5% 42.8% 76.0%

Task Brevo2
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

87.4% 93.2% 89.0% 96.1%
61.2% 84.0% 75.2% 91.7%
40.4% 56.0% 56.3% 79.9%

Task Brevo2
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

7.1% 7.1% 7.1% 6.9%
7.1% 7.1% 7.2% 7.1%
7.3% 7.3% 7.4% 7.3%

Task Mano
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

80.9% 69.2% 90.9% 95.6%
71.9% 65.4% 82.6% 70.8%
22.3% 9.4% 60.3% 80.5%

Task Mano
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

89.3% 93.8% 97.6% 99.2%
79.9% 93.9% 92.8% 98.1%
58.5% 84.3% 83.6% 72.1%

Task Mano
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

93.6% 68.1% 97.3% 98.3%
75.1% 78.2% 88.5% 97.1%
57.4% 87.1% 81.0% 90.9%

Task Mano
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

94.0% 96.2% 98.4% 99.3%
92.9% 92.4% 95.4% 98.7%
71.2% 87.3% 90.2% 96.8%

Task Mano
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

92.3% 98.8% 98.4% 98.6%
87.7% 84.2% 94.7% 93.1%
39.0% 67.7% 87.9% 93.3%

Task Mano
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.7% 98.9% 99.3% 99.3%
83.1% 90.1% 95.9% 98.1%
53.7% 55.5% 89.4% 94.3%

Task Mano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.0% 0.0% 0.0% 38.8%
0.0% 0.0% 0.0% 0.0%
0.0% 0.0% 0.0% 0.0%

Task Lano
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

46.5% 83.4% 57.3% 82.7%
18.3% 58.3% 24.9% 65.2%
19.7% 28.7% 26.5% 41.4%

Task Lano
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

76.9% 88.0% 82.8% 90.6%
40.2% 74.2% 59.9% 76.7%
27.2% 32.8% 39.1% 54.0%

Task Lano
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

80.0% 90.9% 84.6% 89.7%
27.5% 75.4% 46.0% 72.7%
23.8% 41.7% 29.4% 42.3%

Task Lano
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

84.0% 90.1% 87.5% 93.1%
44.8% 69.2% 65.5% 82.3%
28.7% 51.0% 44.7% 51.2%

Task Lano
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

83.9% 89.3% 87.6% 91.1%
52.4% 65.3% 60.4% 78.7%
27.0% 49.7% 37.6% 54.1%

Task Lano
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

87.9% 91.9% 88.5% 92.5%
55.1% 70.3% 58.6% 78.3%
33.5% 51.0% 37.2% 53.1%

Task Lano
Llama(NoPE) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.33576 0.13860 0.33685 0.00655
0.30068 0.27650 0.29977 0.27394
0.26508 0.26093 0.26957 0.25573

Task Lano
Llama(NoPE) - original

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00569 0.00177 0.00418 0.00172
0.00612 0.00230 0.00506 0.00189
0.00749 0.00559 0.00616 0.00419

Task Lano
Llama(NoPE) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00196 0.00104 0.00160 0.00109
0.00476 0.00134 0.00310 0.00146
0.00660 0.00405 0.00553 0.00397

Task Lano
Llama(NoPE) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00230 0.00126 0.00171 0.00101
0.00360 0.00131 0.00220 0.00126
0.00590 0.00502 0.00441 0.00302

Task Lano
Llama(NoPE) - Canon-AC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00156 0.00105 0.00130 0.00080
0.00317 0.00161 0.00189 0.00095
0.00558 0.00334 0.00383 0.00320

Task Lano
Llama(NoPE) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00167 0.00115 0.00134 0.00097
0.00258 0.00186 0.00213 0.00119
0.00589 0.00342 0.00461 0.00298

Task Lano
Llama(NoPE) - Canon-ABC(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00129 0.00090 0.00117 0.00084
0.00253 0.00161 0.00223 0.00116
0.00509 0.00318 0.00452 0.00307

Task Lano
Llama(NoPE) - Canon-ABCD(res)

Figure 28: Llama(NoPE) family: (from left to right) original, Canon-B, -AC, -BD, -ACD, -ABC, -ABCD.
This figure complements Figure 10 and gives more technical details.

44

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

20/70% 47/90% 9/76% 20/57%
9/42% 5/41% 3/50% 3/33%
2/16% 12/41% 3/28% 2/33%

Task Depo1(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

9/53% 20/68% 9/45% 13/60%
11/54% 3/41% 3/26% 6/36%
1/16% 2/26% 1/15% 5/28%

Task Depo1(K=4, k=4/2)
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

2/26% 5/33% 1/43% 8/45%
0/9% 1/14% 1/14% 1/18%
0/10% 1/9% 0/10% 1/16%

Task Depo1(K=4, k=4/2)
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

26/81% 29/69% 33/83% 34/83%
8/53% 21/67% 10/54% 7/50%
3/29% 8/45% 8/43% 2/25%

Task Depo1(K=4, k=4/2)
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

5/49% 6/53% 29/77% 6/60%
1/34% 1/22% 3/33% 2/29%
1/14% 0/12% 1/30% 1/17%

Task Depo1(K=4, k=4/2)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

25/79% 26/68% 45/92% 38/91%
16/49% 4/38% 18/58% 12/58%
5/38% 2/18% 6/42% 6/33%

Task Depo1(K=4, k=4/2)
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

45/89% 50/89% 36/88% 39/89%
9/48% 15/76% 7/48% 23/63%
11/48% 3/35% 3/25% 3/33%

Task Depo1(K=4, k=4/2)
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

2/19% 11/50% 1/15% 1/11%
0/5% 1/15% 0/8% 0/4%
0/1% 0/1% 0/1% 0/1%

Task Depo1(K=8, k=8/4)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/3% 1/10% 1/0% 8/50%
0/3% 0/4% 0/0% 0/6%
0/0% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/0% 0/1% 0/6% 0/0%
0/0% 0/1% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

13/67% 9/51% 1/23% 3/24%
0/7% 1/13% 1/9% 0/3%
0/4% 0/6% 0/5% 0/3%

Task Depo1(K=8, k=8/4)
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/1% 0/1% 0/1% 0/1%
0/1% 0/0% 0/1% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

1/19% 1/20% 12/44% 8/52%
0/5% 1/12% 2/18% 1/11%
0/3% 0/3% 0/4% 0/2%

Task Depo1(K=8, k=8/4)
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

1/14% 6/33% 1/17% 0/11%
0/7% 0/6% 0/3% 0/3%
0/1% 0/3% 0/1% 0/0%

Task Depo1(K=8, k=8/4)
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

75/95% 91/98% 74/95% 90/98%
55/85% 86/97% 57/90% 86/97%
46/83% 69/91% 41/81% 67/91%

Task Depo2(K=4, k=4/2)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

36/77% 38/76% 16/67% 25/55%
52/84% 17/52% 22/64% 33/75%
6/35% 11/45% 26/67% 5/42%

Task Depo2(K=4, k=4/2)
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

12/65% 14/60% 16/72% 17/83%
3/27% 1/7% 1/21% 4/27%
7/35% 20/50% 3/20% 4/40%

Task Depo2(K=4, k=4/2)
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

84/96% 90/97% 80/96% 94/99%
72/92% 79/96% 67/93% 86/95%
49/86% 74/93% 63/86% 67/90%

Task Depo2(K=4, k=4/2)
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

67/96% 90/99% 79/96% 85/97%
42/85% 53/91% 56/90% 50/85%
30/76% 68/93% 23/77% 32/80%

Task Depo2(K=4, k=4/2)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

83/96% 90/97% 85/96% 76/95%
44/83% 74/91% 43/89% 52/92%
23/66% 73/94% 43/81% 66/90%

Task Depo2(K=4, k=4/2)
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

92/99% 82/97% 59/91% 86/97%
78/97% 65/94% 57/81% 63/88%
29/81% 54/83% 43/85% 51/88%

Task Depo2(K=4, k=4/2)
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/2% 31/72% 1/1% 1/1%
1/1% 1/1% 1/2% 1/4%
1/1% 1/13% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 1/18% 1/7% 2/17%
1/8% 1/1% 1/6% 1/15%
1/3% 1/1% 1/2% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/1% 2/1% 1/2%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/2% 1/2% 1/1% 1/4%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/2% 1/1% 1/2% 2/1%
1/1% 1/1% 1/7% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

17.0% 40.1% 71.4% 56.5%
11.5% 87.2% 48.1% 24.2%
2.9% 8.5% 10.8% 26.2%

Task Brevo1
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

1.6% 62.1% 26.5% 76.5%
0.3% 70.1% 0.8% 1.3%
0.6% 22.3% 0.6% 7.7%

Task Brevo1
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.3% 1.0% 0.6% 0.5%
0.1% 0.5% 0.6% 0.5%
0.3% 0.3% 0.1% 0.4%

Task Brevo1
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

58.7% 59.2% 50.7% 83.3%
0.7% 0.4% 13.7% 29.6%
2.6% 8.1% 3.2% 3.7%

Task Brevo1
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

76.5% 81.2% 79.4% 90.5%
66.7% 59.2% 64.1% 83.1%
23.8% 23.7% 46.0% 68.4%

Task Brevo1
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.6% 6.1% 34.6% 0.1%
1.0% 1.3% 0.2% 0.5%
0.3% 0.2% 0.7% 3.8%

Task Brevo1
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

80.7% 86.5% 82.3% 90.5%
70.9% 48.4% 64.3% 70.2%
51.6% 57.2% 20.7% 27.3%

Task Brevo1
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

93.5% 92.8% 86.3% 50.4%
66.6% 80.9% 46.4% 4.8%
17.8% 0.6% 22.3% 2.7%

Task Brevo2
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

1.2% 2.6% 2.6% 2.2%
0.4% 0.3% 1.4% 0.9%
0.6% 0.3% 0.9% 0.6%

Task Brevo2
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

8.1% 57.8% 28.5% 44.9%
1.9% 10.6% 1.6% 44.2%
0.2% 3.3% 0.7% 3.2%

Task Brevo2
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

46.8% 10.6% 9.3% 13.3%
1.1% 3.9% 23.9% 0.5%
0.7% 0.3% 1.4% 0.8%

Task Brevo2
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

94.1% 96.1% 95.0% 97.2%
80.2% 88.3% 68.3% 79.1%
63.9% 70.2% 55.9% 35.1%

Task Brevo2
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

63.0% 5.6% 4.1% 39.1%
3.1% 61.2% 0.8% 1.5%
1.3% 0.1% 1.1% 1.0%

Task Brevo2
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

67.4% 95.5% 91.0% 75.9%
8.9% 15.3% 0.9% 56.1%
28.0% 8.8% 0.4% 1.1%

Task Brevo2
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

91.4% 97.1% 96.3% 98.8%
81.5% 95.3% 87.9% 88.0%
52.8% 64.5% 69.9% 94.0%

Task Mano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

32.6% 30.1% 47.8% 53.0%
32.2% 19.9% 16.9% 34.6%
14.9% 10.6% 14.4% 10.1%

Task Mano
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

59.9% 75.2% 65.4% 66.2%
68.2% 52.4% 44.9% 48.9%
51.7% 41.8% 32.6% 34.1%

Task Mano
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

88.5% 92.1% 92.9% 91.4%
84.3% 85.4% 93.0% 68.8%
65.9% 79.3% 69.0% 69.7%

Task Mano
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

98.9% 99.3% 99.6% 99.5%
98.9% 99.3% 99.3% 99.2%
98.6% 99.2% 99.0% 98.8%

Task Mano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

90.6% 88.7% 86.0% 95.4%
76.0% 69.3% 58.4% 79.5%
50.2% 64.5% 73.5% 88.2%

Task Mano
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

99.6% 99.8% 99.9% 99.9%
99.3% 99.7% 99.5% 99.7%
99.0% 99.5% 98.9% 99.6%

Task Mano
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.2% 93.5% 91.1% 94.1%
69.1% 82.2% 78.2% 84.2%
43.3% 65.3% 50.9% 70.3%

Task Lano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

66.3% 82.0% 67.4% 91.8%
5.0% 24.1% 33.9% 37.7%
22.2% 41.6% 29.1% 38.7%

Task Lano
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

44.8% 33.1% 56.6% 41.7%
2.1% 5.2% 2.5% 8.1%
11.0% 12.8% 12.5% 12.5%

Task Lano
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

91.3% 93.3% 92.5% 94.2%
65.9% 84.3% 74.4% 83.8%
54.0% 65.5% 56.5% 73.1%

Task Lano
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

83.9% 90.6% 85.9% 86.4%
63.9% 77.8% 73.1% 68.9%
46.4% 57.4% 46.1% 51.9%

Task Lano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

89.6% 90.9% 90.7% 93.1%
50.1% 79.8% 62.0% 84.6%
45.8% 61.1% 44.0% 60.5%

Task Lano
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

86.2% 89.9% 87.1% 88.2%
65.3% 74.9% 65.6% 80.4%
46.4% 50.2% 45.0% 50.8%

Task Lano
Mamba2 - Canon-B(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00113 0.00075 0.00090 0.00062
0.00163 0.00090 0.00111 0.00084
0.00420 0.00215 0.00338 0.00185

Task Lano
Mamba2 - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00328 0.00185 0.00315 0.00095
0.00972 0.00528 0.00423 0.00384
0.00676 0.00407 0.00568 0.00444

Task Lano
Mamba2 - mimetic

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00583 0.00767 0.00408 0.00590
0.01181 0.00945 0.01163 0.00884
0.00990 0.00910 0.00930 0.00995

Task Lano
Mamba2 - noconv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00090 0.00071 0.00081 0.00069
0.00182 0.00088 0.00132 0.00090
0.00293 0.00213 0.00281 0.00171

Task Lano
Mamba2 - Canon-AB(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00157 0.00098 0.00144 0.00138
0.00192 0.00118 0.00140 0.00165
0.00358 0.00272 0.00363 0.00311

Task Lano
Mamba2 - Canon-AB(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00108 0.00101 0.00097 0.00075
0.00273 0.00107 0.00200 0.00083
0.00372 0.00243 0.00396 0.00245

Task Lano
Mamba2 - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00143 0.00100 0.00133 0.00123
0.00186 0.00131 0.00185 0.00105
0.00372 0.00326 0.00367 0.00322

Task Lano
Mamba2 - Canon-B(no-res)

Figure 29: Mamba2 variants (left to right): original (conv1d), original (conv1d) + mimetic, no conv1d, Canon-
AB(res), Canon-AB(no-res), Canon-B(res), Canon-B(no-res).

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

12/65% 29/67% 24/74% 43/84%
4/35% 12/46% 13/62% 13/61%
1/22% 13/56% 7/33% 10/42%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/18% 1/17% 1/19% 1/27%
1/12% 1/17% 0/13% 1/13%
0/5% 0/7% 0/8% 0/9%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

40/79% 6/76% 18/67% 36/74%
10/49% 5/52% 2/28% 2/79%
1/23% 1/28% 1/18% 1/42%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

29/75% 36/80% 46/88% 49/84%
5/50% 23/78% 17/66% 19/79%
4/32% 5/36% 10/48% 18/54%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

29/86% 25/81% 39/83% 42/78%
15/63% 15/50% 16/59% 13/69%
10/53% 5/32% 7/41% 8/47%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

27/67% 26/70% 69/96% 40/90%
6/42% 19/54% 22/88% 29/75%
3/27% 6/33% 3/49% 43/73%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

15/58% 29/86% 14/75% 21/61%
4/34% 12/65% 4/31% 11/47%
2/16% 5/33% 1/22% 11/66%

Task Depo1(K=4, k=4/2)
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/9% 2/28% 1/21% 25/71%
0/3% 1/14% 0/7% 5/40%
0/0% 0/4% 0/2% 0/8%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/0% 1/0% 0/0% 0/1%
0/1% 0/0% 0/0% 0/0%
0/0% 0/0% 0/0% 0/0%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/2% 0/2% 0/2% 1/6%
0/1% 0/1% 0/0% 0/2%
0/0% 0/2% 0/0% 0/1%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

9/50% 8/47% 4/42% 8/51%
0/5% 1/11% 1/13% 4/36%
0/5% 2/21% 0/9% 1/14%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

2/27% 2/25% 12/53% 6/67%
0/10% 0/6% 5/40% 3/35%
0/2% 0/3% 0/8% 0/9%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

1/21% 1/31% 2/47% 33/75%
1/9% 1/11% 0/20% 2/25%
0/6% 1/12% 0/8% 1/10%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=225

N=300

N=375

0/10% 5/35% 0/4% 9/43%
0/1% 1/13% 0/1% 2/28%
0/1% 0/4% 0/0% 0/4%

Task Depo1(K=8, k=8/4)
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

18/61% 80/95% 30/86% 69/89%
17/63% 47/83% 17/55% 42/82%
5/39% 46/85% 10/41% 24/75%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/9% 3/23% 2/25% 8/46%
1/4% 15/54% 1/3% 1/9%
1/8% 2/27% 1/3% 1/10%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

86/96% 91/99% 92/98% 74/95%
62/95% 67/97% 44/91% 74/97%
37/73% 66/88% 53/90% 53/90%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

85/96% 93/99% 53/95% 94/99%
68/89% 83/96% 38/86% 76/97%
40/81% 57/88% 24/71% 53/88%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

81/95% 91/98% 88/98% 94/99%
57/81% 83/95% 68/89% 85/98%
62/88% 55/86% 52/82% 77/95%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

51/79% 81/96% 78/93% 88/96%
27/61% 66/84% 27/82% 82/96%
19/63% 63/88% 26/67% 73/89%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

47/82% 53/85% 58/90% 77/94%
19/54% 41/82% 33/76% 61/91%
26/51% 23/64% 23/59% 41/75%

Task Depo2(K=4, k=4/2)
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/1% 1/1% 1/1%
1/1% 1/7% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/9% 1/5% 2/1% 1/1%
1/1% 1/3% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 3/35% 2/1% 1/2%
1/1% 1/1% 1/1% 1/3%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 1/1% 1/3% 1/2%
1/1% 1/6% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

2/1% 1/1% 1/1% 1/5%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=75

N=100

N=125

1/1% 2/1% 1/1% 1/3%
1/1% 1/1% 1/1% 1/1%
1/1% 1/1% 1/1% 1/1%

Task Depo2(K=16, k=16/8)
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

3.7% 80.1% 50.1% 72.4%
0.3% 0.5% 3.8% 4.8%
0.1% 0.0% 1.1% 1.2%

Task Brevo1
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

0.3% 0.3% 0.4% 0.5%
0.3% 0.1% 0.5% 0.2%
0.2% 0.0% 0.2% 0.3%

Task Brevo1
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

70.6% 64.7% 65.0% 87.8%
5.7% 21.2% 13.0% 55.1%
2.1% 0.4% 8.7% 41.1%

Task Brevo1
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

39.3% 43.6% 78.4% 92.4%
6.8% 5.2% 1.0% 7.8%
1.5% 0.7% 0.4% 3.7%

Task Brevo1
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

40.1% 25.0% 3.5% 79.6%
0.3% 7.7% 0.2% 1.3%
0.8% 1.4% 1.2% 8.6%

Task Brevo1
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

58.7% 0.7% 36.0% 2.1%
0.7% 36.1% 25.9% 8.1%
0.8% 12.1% 0.5% 6.2%

Task Brevo1
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=70

N=90

N=110

2.3% 0.3% 3.3% 72.7%
1.3% 12.5% 0.5% 1.9%
0.5% 0.6% 0.2% 0.4%

Task Brevo1
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

50.8% 95.6% 68.1% 3.4%
12.5% 67.0% 14.5% 0.5%
3.3% 12.4% 4.0% 0.5%

Task Brevo2
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

8.2% 39.1% 3.7% 31.0%
0.6% 12.6% 1.2% 10.8%
0.4% 1.3% 0.9% 1.8%

Task Brevo2
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

83.7% 85.2% 65.6% 94.1%
52.6% 34.1% 15.6% 84.2%
13.2% 10.2% 14.0% 53.1%

Task Brevo2
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

34.9% 13.0% 69.6% 65.9%
2.7% 34.8% 11.0% 13.5%
1.4% 2.6% 2.1% 4.1%

Task Brevo2
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

6.8% 71.6% 55.1% 80.7%
4.8% 6.1% 0.7% 2.5%
0.3% 1.0% 1.1% 3.4%

Task Brevo2
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

29.9% 4.9% 17.1% 20.6%
5.4% 0.3% 10.7% 0.9%
0.9% 0.3% 2.2% 0.7%

Task Brevo2
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

N=30

N=40

N=50

13.1% 12.5% 29.0% 19.9%
1.1% 2.6% 2.4% 1.0%
3.4% 5.0% 2.8% 0.6%

Task Brevo2
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

96.5% 95.1% 95.2% 95.7%
79.9% 84.8% 88.0% 91.8%
74.4% 90.1% 72.3% 87.4%

Task Mano
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

73.7% 78.8% 68.2% 66.9%
71.1% 62.3% 51.1% 47.5%
31.2% 28.4% 28.6% 37.2%

Task Mano
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

99.2% 99.2% 98.4% 99.4%
98.1% 98.9% 98.2% 98.4%
93.1% 97.2% 95.4% 98.0%

Task Mano
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

97.6% 94.5% 99.0% 94.4%
84.1% 95.9% 98.9% 98.6%
75.4% 64.9% 80.8% 80.8%

Task Mano
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

86.5% 90.8% 89.7% 80.2%
71.3% 71.9% 98.7% 66.7%
97.0% 70.2% 78.6% 82.4%

Task Mano
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

78.7% 78.5% 98.4% 97.2%
72.3% 72.9% 76.4% 76.0%
61.9% 63.8% 70.7% 40.6%

Task Mano
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

L=10

L=13

L=16

82.6% 98.2% 94.8% 91.4%
67.3% 80.2% 83.1% 87.1%
64.7% 64.8% 71.4% 74.9%

Task Mano
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

83.8% 92.2% 86.8% 92.2%
45.5% 72.0% 54.2% 74.3%
32.7% 50.0% 35.3% 46.1%

Task Lano
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

42.0% 47.7% 28.5% 40.3%
2.6% 9.9% 5.0% 5.9%
9.6% 17.8% 12.3% 9.2%

Task Lano
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

73.8% 85.7% 77.9% 81.5%
38.2% 60.2% 41.8% 64.3%
32.9% 41.4% 33.5% 41.3%

Task Lano
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

90.5% 92.2% 89.9% 94.6%
55.2% 81.0% 68.5% 84.3%
44.2% 64.4% 41.8% 66.4%

Task Lano
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

88.8% 93.6% 90.0% 93.6%
58.8% 83.0% 70.2% 84.1%
39.7% 68.5% 50.9% 58.5%

Task Lano
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

81.6% 90.7% 84.7% 90.9%
39.3% 72.9% 52.3% 73.7%
34.9% 54.5% 38.9% 53.3%

Task Lano
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

64.9% 88.4% 82.7% 90.4%
16.0% 67.4% 44.7% 71.9%
27.3% 44.5% 29.8% 45.0%

Task Lano
Mamba2(mlp) - Canon-B(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00151 0.00088 0.00133 0.00084
0.00308 0.00144 0.00247 0.00138
0.00509 0.00332 0.00466 0.00366

Task Lano
Mamba2(mlp) - original (conv1d)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00614 0.00518 0.00847 0.00648
0.01130 0.00770 0.00940 0.00889
0.01050 0.00799 0.00955 0.00989

Task Lano
Mamba2(mlp) - noconv1d

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00243 0.00144 0.00209 0.00178
0.00366 0.00212 0.00332 0.00191
0.00526 0.00408 0.00490 0.00402

Task Lano
Mamba2(mlp) - Canon-ABCD(no-res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00096 0.00079 0.00104 0.00064
0.00246 0.00103 0.00168 0.00086
0.00379 0.00220 0.00401 0.00214

Task Lano
Mamba2(mlp) - Canon-ABCD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00109 0.00072 0.00100 0.00070
0.00219 0.00089 0.00153 0.00087
0.00421 0.00200 0.00321 0.00252

Task Lano
Mamba2(mlp) - Canon-ACD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00176 0.00098 0.00143 0.00093
0.00358 0.00139 0.00256 0.00139
0.00462 0.00285 0.00422 0.00300

Task Lano
Mamba2(mlp) - Canon-BD(res)

8L512D 8L768D 12L512D 12L768D

cfg3f

cfg3j

cfg3k

0.00332 0.00121 0.00161 0.00097
0.00631 0.00172 0.00320 0.00149
0.00590 0.00378 0.00559 0.00365

Task Lano
Mamba2(mlp) - Canon-B(res)

Figure 30: Mamba2(mlp) variants (left to right): original (conv1d), no conv1d, Canon-ABCD(no-res), Canon-
ABCD(res), Canon-ACD(res), Canon-BD(res), Canon-B(res).

45

References

[1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. arXiv
preprint arXiv:2412.08905, 2024.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Can SGD Learn Recurrent Neural Networks with Provable Gener-
alization? In NeurIPS, 2019. Full version available at http://arxiv.org/abs/1902.01028.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 1, Learning Hierarchical Language
Structures. ArXiv e-prints, abs/2305.13673, May 2023. Full version available at http://arxiv.org/

abs/2305.13673.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. In COLT, 2023. Full version available at http://arxiv.org/abs/2001.04413.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge Storage and
Extraction. In Proceedings of the 41st International Conference on Machine Learning, ICML 2024,
2024. Full version available at http://arxiv.org/abs/2309.14316.

[6] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.2, Knowledge Manipulation. In
Proceedings of the 13th International Conference on Learning Representations, ICLR 2025, 2025. Full
version available at http://arxiv.org/abs/2309.14402.

[7] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.3, Knowledge Capacity Scaling
Laws. In Proceedings of the 13th International Conference on Learning Representations, ICLR 2025,
2025. Full version available at http://arxiv.org/abs/2404.05405.

[8] Simran Arora, Aman Timalsina, Aaryan Singhal, Benjamin Spector, Sabri Eyuboglu, Xinyi Zhao,
Ashish Rao, Atri Rudra, and Christopher Ré. Just read twice: closing the recall gap for recurrent
language models. arXiv preprint arXiv:2407.05483, 2024.

[9] Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

[10] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.

[11] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical common-
sense in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 7432–7439, 2020.

[12] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B: An open-source
autoregressive language model. In Proceedings of the ACL Workshop on Challenges & Perspectives in
Creating Large Language Models, 2022. URL https://arxiv.org/abs/2204.06745.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[14] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794, 2020.

[15] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

[16] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2924–2936, 2019. doi: 10.18653/v1/N19-1300.

[17] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and

46

http://arxiv.org/abs/1902.01028
http://arxiv.org/abs/2305.13673
http://arxiv.org/abs/2305.13673
http://arxiv.org/abs/2001.04413
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2309.14402
http://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2204.06745

Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

[19] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024. URL https://arxiv.org/abs/

2405.21060.

[20] Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing gated
linear recurrences with local attention for efficient language models. arXiv preprint arXiv:2402.19427,
2024.

[21] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368–2378, Minneapolis,
Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https:

//aclanthology.org/N19-1246/.

[22] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):5232–5270,
2022.

[23] Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Ré. Hungry
hungry hippos: Towards language modeling with state space models. arXiv preprint arXiv:2212.14052,
2022. URL https://arxiv.org/abs/2212.14052.

[24] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model
evaluation, 07 2024. URL https://zenodo.org/records/12608602.

[25] Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Multi-token attention. arXiv
preprint arXiv:2504.00927, 2025.

[26] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. URL https://arxiv.org/abs/2312.00752.

[27] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer for
speech recognition. arXiv preprint arXiv:2005.08100, 2020.

[28] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

[29] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and Yongqiang Xiong. Tutel:
Adaptive mixture-of-experts at scale. CoRR, abs/2206.03382, June 2022. URL https://arxiv.org/

pdf/2206.03382.pdf.

[30] Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Transformers
are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

[31] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM Computing
Surveys, 55(12):1–38, 2023. doi: 10.1145/3571730. URL https://doi.org/10.1145/3571730.

[32] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

[33] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of

47

https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2405.21060
https://aclanthology.org/N19-1246/
https://aclanthology.org/N19-1246/
https://arxiv.org/abs/2212.14052
https://zenodo.org/records/12608602
https://arxiv.org/abs/2312.00752
https://arxiv.org/pdf/2206.03382.pdf
https://arxiv.org/pdf/2206.03382.pdf
https://doi.org/10.1145/3571730

the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611, Vancouver,
Canada, 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https:

//aclanthology.org/P17-1147/.

[34] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs:
Fast autoregressive transformers with linear attention. In International conference on machine learning,
pages 5156–5165. PMLR, 2020.

[35] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of NAACL-HLT, pages 4171–4186,
2019.

[36] Yury Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack. Ad-
vances in Neural Information Processing Systems, 37:106519–106554, 2024.

[37] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural ques-
tions: A benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276. URL https://aclanthology.org/Q19-1026/.

[38] Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
improving transformers overcome easy-to-hard and length generalization challenges. arXiv preprint
arXiv:2502.01612, 2025. URL https://arxiv.org/abs/2502.01612.

[39] OpenAI. Gpt-4 technical report, 2023.

[40] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1525–1534, 2016. doi:
10.18653/v1/P16-1144.

[41] Guilherme Penedo, Hynek Kydĺıček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text
data at scale. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://arxiv.org/abs/2406.17557.

[42] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

[43] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: General-
ization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022. URL
https://arxiv.org/abs/2201.02177.

[44] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

[45] Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for sequence
modeling. Advances in Neural Information Processing Systems, 36:33202–33221, 2023.

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[47] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 784–789, Melbourne, Australia, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-2124. URL https://aclanthology.org/P18-2124/.

[48] Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Simple hybrid
state space models for efficient unlimited context language modeling. arXiv preprint arXiv:2406.07522,
2024.

[49] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An adversarial

48

https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://aclanthology.org/Q19-1026/
https://arxiv.org/abs/2502.01612
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2201.02177
https://aclanthology.org/P18-2124/

winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

[50] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4463–4473, 2019. doi: 10.18653/v1/D19-1454.

[51] Eshika Saxena, Alberto Alfarano, Emily Wenger, and Kristin Lauter. Teaching transformers modular
arithmetic at scale. arXiv preprint arXiv:2410.03569, 2024. URL https://arxiv.org/abs/2410.

03569.

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[53] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

[54] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[55] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In International
Conference on Learning Representations, 2016.

[56] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

[57] DR So, W Manke, H Liu, Z Dai, N Shazeer, and QV Le. Primer: Searching for efficient transformers
for language modeling. arxiv 2021. arXiv preprint arXiv:2109.08668.

[58] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. https://www.cerebras.
net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, 2023.
URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

[59] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2021.

[60] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

[61] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[62] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[63] Asher Trockman, Hrayr Harutyunyan, J Zico Kolter, Sanjiv Kumar, and Srinadh Bhojanapalli. Mimetic
initialization helps state space models learn to recall. arXiv preprint arXiv:2410.11135, 2024.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[65] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[66] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart Van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698, 2015.

[67] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Intro-
ducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 22–31, 2021.

49

https://arxiv.org/abs/2410.03569
https://arxiv.org/abs/2410.03569
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

[68] Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

[69] Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with delta
rule. arXiv preprint arXiv:2412.06464, 2024.

[70] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

[71] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of Language Models: Part 2.1, Grade-
School Math and the Hidden Reasoning Process. In Proceedings of the 13th International Conference on
Learning Representations, ICLR 2025, 2025. Full version available at https://arxiv.org/abs/2407.

20311.

[72] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of Language Models: Part 2.2, How
to Learn From Mistakes on Grade-School Math Problems. In Proceedings of the 13th International
Conference on Learning Representations, ICLR 2025, 2025. Full version available at http://arxiv.

org/abs/2408.16293.

[73] Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

[74] Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

[75] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800, 2019. doi: 10.18653/v1/P19-1472.

[76] Yu Zhang, Songlin Yang, Rui-Jie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda Shi,
Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling. Advances
in Neural Information Processing Systems, 37:116870–116898, 2024.

[77] Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang Song,
Zhiyuan Liu, Zeyu Mi, and Maosong Sun. Relu2 wins: Discovering efficient activation functions for
sparse llms. arXiv preprint arXiv:2402.03804, 2024.

[78] Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371, 2024.

50

https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311
http://arxiv.org/abs/2408.16293
http://arxiv.org/abs/2408.16293

	1 Introduction
	2 Synthetic Tasks for Decomposing Intelligence
	2.1 Our First Set of Five Synthetic Pretrain Tasks

	3 Initial Comparison on Well-Known Architectures
	3.1 Initial Comparison Results

	4 Canon Layers: Enhancing Horizontal Information Flow
	5 When Transformer Meets Canon
	5.1 RoPE with Canon Layers
	5.2 NoPE with Canon Layers
	5.3 Ablation Studies With Canon Layers
	5.4 MLP and Mixture-of-Experts

	6 When Linear Attention Meets Canon
	7 When Mamba Meets Canon
	7.1 Ablation Studies with Canon Layers

	8 Final Comparison Across Base Models
	9 Real-Life Experiments
	10 Conclusion and Future Direction
	A Details on Synthetic Pretraining Tasks
	A.1 Details on Task Depo: Mental Reasoning Depth
	A.2 Details on Task Brevo: Mental Reasoning Breadth
	A.3 Details on Task Capo: Knowledge Capacity
	A.4 Details on Task Mano: Knowledge Manipulation
	A.5 Details on Task Lano: Hierarchical Language Structure

	B Details on Other Experiments
	C Details on Architectures Used
	D Missing Experiments
	D.1 Intentionally Omitted Experiments
	D.2 Even More Ablation Studies

