Mechanism Design with Approximate Valuations

Alessandro Chiesa Silvio Micali
Zeyuan Allen Zhu

Recall...

$$
888
$$

Recall...

Recall...

Rolex Auction

GOAL: maximize social welfare (valuation of the player who wins)

Rolex Auction

[Vickrey 61]: "run my second-price mechanism" "highest bidder wins, pays the second bid..."

1

$2 M S W=17 k$

3

n

Rolex Auction

GOAL: maximize social welfare (valuation of the player who wins)

[VCG 70s]: "Can also do multiple goods (combinatorial auctions)!"

Two-Line Mechanism

 Two-Line Proof Optimal Performance

Oversimplified?

Warning!

optimal performance from an ASSUMPTION:

each player knows his own valuation exactly

Today's Agenda

First attempt

- Weaker assumption: Bayesian?
- each player knows his own individual Bayesian
- same second-price mechanism: just truthfully bid your expected value

Does player 2 really know $\frac{\operatorname{Pr}[16 \mathrm{k}]}{\operatorname{Pr}[16.6 \mathrm{k}]}=1.53175290120983217579843217$?
If no, Bayesian assumption is still very strong!

First attempt
Weaker assumption: Bayesian?

1

2

3

n

Our Attempt

- Our assumption: "approximate valuation"
- each player only knows that his valuation is drawn from a set

Our Attempt

fact

- Our assumption: "approximate valuation"
© exists some global constant $\delta \in[0,1]$
© player i has a δ-approximate valuation set K_{i}
- player i 's true valuation θ_{i} is guaranteed to be $\in K_{i}$

Example: $\delta=40 \%$

Our Attempt

- Our assumption: "approximate valuation"
© exists some global constant $\delta \in[0,1]$
© player i has a δ-approximate valuation s
- player i 's true valuation θ_{i} is guaranteed to be $\in K_{i}$
$\delta=0 \Rightarrow$ Classical Mechanism Design
$\delta>0 \Rightarrow$ Mechanism Design with Approximate Valuations

Unrelated work: Knightian decision theory
Uncertainty is modeled as a set, but not studied under mechanism design.

Today's Agenda

How Much SW Can We Guarantee?

How Much SW Can We Guarantee?

How Much SW Can We Guarantee?

WAIT!!!

How to define SW or MSW when $\boldsymbol{\theta}_{\boldsymbol{i}}$ is unknown?

Adversarial Performance Measure

Adversarial Performance Measure

Adversarial Performance Measure

 winner=? (prices=...)

Adversarial Performance Measure

 winner=2 (prices=...)

Adversarial Performance Measure

SW

Adversarial Performance Measure

 winner=2 (prices=...) worst SW/MSW

Today's Agenda

Our Results

Our Results

Implementation in ...

... Dominant Strategies

Nonsense:

$s_{i} \geq s_{i}^{\prime}$ iff $\forall s_{-i} \quad \forall \theta_{i} \in K_{i} \quad u_{i}\left(\theta_{i} ; s_{i}, s_{-i}\right) \geq u_{i}\left(\theta_{i} ; s_{i}^{\prime}, s_{-i}\right)$
(Coincides with Knightian decision theory, i.e., 1-player behavioral analysis.)

Our Results

	Dominant Strategies	
	Negative result	Positive result
		$f(\delta) ?$
Single-good		$(1-\delta) ? c$
auctions		$(1-\delta)^{2} ?$

Our Results

Dominant-Strategy for Single-Good

- Thm': $\forall n \forall \delta>0 \forall B \geq \frac{1}{\delta} \forall$ dst $M, \exists K_{1} \ldots K_{n}$,
$\exists \theta_{1} \ldots \theta_{n} \in K_{1} \ldots K_{n}$

1. players bid sets of va Valuation bound.
bidding his true K_{i} is a dominant strategy.

- Thm': $\forall \delta>0, \forall$ dominant-strategy-truthful M, it can guarantee no more than $\frac{1}{n} \cdot \mathrm{MSW}$ Revelation Principle
- Thm: $\forall \delta>0, \forall$ dominant-strategy M, it can guarantee no more than $\frac{1}{n} \cdot \mathrm{MSW}$

Dominant-Strategy for Single-Good

- Thm': $\forall n \forall \delta \forall B \geq \frac{1}{\delta} \forall$ dst $M, \exists K, \exists \theta \in K$ $\mathbb{E}[S W(\theta, M(K))] \leq\left(\frac{1}{n}+\frac{\frac{1}{\delta}+1}{B}\right) M S W(\theta)$
- Proof: $\delta[x] \stackrel{\text { def }}{=}(x-\delta x, x+\delta x) \cap\{0, \ldots B\}$

Dominant Freezing Lemma

$$
\begin{aligned}
& \frac{1}{\delta} \\
& \frac{1}{\delta}
\end{aligned}
$$

player i 's allocation probability under M :

Dominant-Strategy for Single-Good

- Thm': $\forall n \forall \delta \forall B \geq \frac{1}{\delta} \forall d$ st $M, \exists K, \exists \theta \in K$ $\mathbb{E}[S W(\theta, M(K))] \leq\left(\frac{1}{n}+\frac{\left[\frac{1}{\delta}\right]+1}{B}\right) M S W(\theta)$
- Proof: $\delta[x] \stackrel{\text { def }}{=}(x-\delta x, x+\delta x) \cap\{0, \ldots B\}$

Dominant Freezing Lemma

- $\forall i, \forall K_{-i}, \forall x \geq \frac{1}{\delta} \quad M_{i}^{A}\left(\delta[x], K_{-i}\right)=M_{i}^{A}\left(\delta[x+1], K_{-i}\right)$

QED

Dominant-Strategy for Single-Good

Dominant Freezing Lemma

- $\forall i, \forall K_{-i}, \forall x \geq \frac{1}{\delta} \quad M_{i}^{A}\left(\delta[x], K_{-i}\right)=M_{i}^{A}\left(\delta[x+1], K_{-i}\right)$

Dominant-Strategy for Single-Good

Dominant Freezing Lemma

- $\forall i, \forall K_{-i}, \forall x \geq \frac{1}{\delta} \quad M_{i}^{A}\left(\delta[x], K_{-i}\right)=M_{i}^{A}\left(\delta[x+1], K_{-i}\right)$

Proof:

To claim that

$$
\begin{gathered}
x+1 \in \delta[x], \text { we } \\
\text { need } x \geq \frac{1}{\delta}
\end{gathered}
$$

$\forall \theta_{i}=E x \delta[x]$

$$
\begin{aligned}
& \left.\left.\mu_{i}^{A}\left(\delta[x], K_{-i}\right) \theta_{i}-M_{i}^{e}\left(\delta[x], K_{-i}\right) \geq M_{i}^{A(S[x: 1]}-1\right], N_{-i)}\right) 0-M_{i}^{\rho}\left(\delta[x+1], K_{-i}\right) \\
& M_{i}^{A}\left(\delta[x], K_{-i}\right) \\
& M_{i}^{A}\left(\delta[x+1], K_{-i}\right) \\
& \text { 十 }
\end{aligned}
$$

$\forall \theta \theta_{i} \in=\delta[x+1]$
$M_{i}^{A}\left(\delta[x-1], V_{-\nu} 0_{\tau}-M_{i}^{P}\left(\delta(x+1], K_{-i}\right) \geq M_{i}^{A}\left(\delta[x], K_{-i}\right)\right\rangle \theta_{i}=M_{i}^{P}\left(\delta\{x], K_{-i}\right)$

Our Results

	Dominant Strategies		Undominated Strategies
	Negative result	A weaker	Nomatio Dasitive result
Single-good auctions	$\begin{gathered} (\forall \delta>0, n) \\ \leq \frac{1}{n} \end{gathered}$	$\geq \frac{1}{n}$	

undominated-strategy mechanisms
dominant-strategy mechanisms

Our Results

Implementation in ...

... Bominant-Strategies
... Undominated Strategies

Our Results

Implementation in ...

... Bominant-Strategies
... Undominated Strategies

$s_{i}>s_{i}^{\prime}$ iff:

1) $\forall s_{-i} \quad \forall \theta_{i} \in K_{i} \quad u_{i}\left(\theta_{i} ; s_{i}, s_{-i}\right) \geq u_{i}\left(\theta_{i} ; s_{i}^{\prime}, s_{-i}\right)$
2) $\exists s_{-i}^{\prime} \quad \exists \theta_{i} \in K_{i} \quad u_{i}\left(\theta_{i} ; s_{i}, s_{-i}^{\prime}\right)>u_{i}\left(\theta_{i} ; s_{i}^{\prime}, s_{-i}^{\prime}\right)$

Our Results

Implementation in ...

... Bominant-Strategies
... Undominated Strategies

Our Results

Non-trivial! Need to deal with all mechanisms!
Strategies could be numbers, sets, or even angry birds!

Strategies

Negative result Positive result Posult Positive result

Single-good

Our own probabilistic mechanisms stupid above

stupid below

Our Results

Dominant Strategies

Negative result	Positive result	Negative result

$$
\begin{array}{l|c|c}
\leq \frac{1}{n} & \geq \frac{1}{n} & \operatorname{det} \leq\left(\frac{1-\delta}{1+\delta}\right)^{2} \\
\text { prob } \leq \frac{(1-\delta)^{2}+\frac{4 \delta}{n}}{(1+\delta)^{2}} & \text { prob } \geq \frac{\left(\frac{1-\delta}{1+\delta}\right)^{2}}{(1-\delta)^{2}+\frac{4 \delta}{n}}
\end{array}
$$

$$
\text { e.g. } \theta_{i}(\{1\})=7, \theta_{i}(\{2\})=10, \theta_{i}(\{1,2\})=12
$$

Single-good auctions

Undominated Strategies

	Negative result	Positive result	Negative result	Positive result
Single-good auctions	$\leq \frac{1}{n}$	$\geq \frac{1}{n}$	$\operatorname{det} \leq\left(\frac{1-\delta}{1+\delta}\right)^{2}$	$\operatorname{det} \geq\left(\frac{1-\delta}{1+\delta}\right)^{2}$
e.g. $\theta_{i}(\{1\})=7, \theta_{i}(\{2\})=10, \theta_{i}(\{1,2\})=12$				

Combinatorial m goods on sale, players may be interested in arbitrarily subsets. [in submission]

$$
\rightarrow \operatorname{VCG} ?\left(\frac{1-\delta}{1+\delta}\right) c^{2^{m}-2}
$$

Undom. Strat. in Comb. Auctions

VCG Characterization Lemma

- under the VCG mechanism for combinatorial auctions of m goods, for every player i, his bidding strategy v_{i} is undominated if and only if...

Single-good (2 ${ }^{\text {nd }}$ price):

- v_{i} is a number
- e.g. $v_{i}=7$
- K_{i} is δ-approximate
- e.g. $K_{i}=[6,9]$
- v_{i} is non-stupid iff:

Combinatorial auction (VCG):

- v_{i} is a function $2^{[m]} \backslash\{\emptyset\} \rightarrow \mathbb{R}_{\geq 0}$
- e.g. $v_{i}(\{1\})=7, v_{i}(\{2\})=10, v_{i}(\{1,2\})=12$
- $K_{i}(S)$ is δ-approximate
e e.g. $K_{i}(\{1\})=[6,9], K_{i}(\{2\})=[8,11], K_{i}(\{1,2\})=[10,13]$
- v_{i} is non-stupid iff:

Undom. Strat. in Comb. Auctions

VCG Characterization Lemma

- under the VCG mechanism for combinatorial auctions of m goods, for every player i, his bidding strategy $v_{i} \in \operatorname{UDed}\left(K_{i}\right)$ if and only if...
" v_{i} is inside the union of m ! triangular cylinders, minus two hypercubes..."
e.g. $K_{i}(\{1\})=[6,9], v_{i}(\{2\})=[8,11], v_{i}(\{1,2\})=[10,13]$

undominated

 strategies

Undom. Strat. in Comb. Auctions

- Thm: $\forall n \geq 2, m \geq 2, \delta>0$, the VCG mechanism guarantees $\left(\frac{1-\delta}{1+\delta}\right)^{2^{m}-2} \cdot$ MSW.

Hyperlink

Today's Agenda

Conclusion

Goal: want to learn about others, who may not know themselves very well.

Today's positive results:
The Goal is desirable and doable! (But more work.)
Today's negative results:
More exciting work to be done!

Thank you!

